

PROYECTO DE PROLONGACIÓN DEL ACCESO FERROVIARIO Y RED INTERIOR EN EL PUERTO EXTERIOR DE A CORUÑA

ANEJO Nº 09. SUPERESTRUCTURA Y MONTAJE DE VÍA

INDICE

1	INTE	INTRODUCCIÓN1			
2	SITU	JACIÓN	DEPARTIDA	1	
3	ACT	UACIOI	NES	3	
	3.1	ACCES	O	3	
	3.2	PLAYA	DE VÍAS	3	
	3.3	ASPEC	TOS DE LA OPERATIVIDAD DEL PUERTO	4	
	3.4	COORI	DINACIÓN CON CMS	4	
4	DEF	INICIÓN	DE LA PLATAFORMA DE VÍA	5	
5	MA	ΓERIALE	S DE VÍA	6	
	5.1	CARRII	60E1	6	
	5.2	CARRII	_ 54E1	6	
	5.3		SAS		
	5.4	PIQUET	ES DE VÍA	7	
	5.5	TOPER	AS	8	
	5.6	CAJEA	DOS PARA MOTORES, BALIZAS Y CONTADORES DE EJES	8	
	5.7	CAJEA	DOS PARA SISTEMAS DE SEÑALIZACIÓN	9	
	5.8	RESUM	IEN DE MATERIALES DE VÍA	9	
6	VÍA EN PLACA		10		
	6.1	VÍA EN	PLACA PARA ANCHO POLIVALENTE: TRAVIESAS BIBLOQUE	11	
		6.1.1	Descripción del sistema	11	
		6.1.2	Elementos que componen el sistema	12	

APÉNDICE I.		CÁLCULO DE VÍA EN PLACA	22
	6.4.2	Transición de inclinación y tipología del carril	19
	6.4.1	Entre secciones de vía sin balasto	19
6.4	ZONAS	DE TRANSICIÓN	18
	6.3.3	Resumen de desvíos	18
	6.3.2	Zonas de ancho mixto: aparatos estuchados	17
	6.3.1	Zonas de ancho polivalente: aparatos de vía con sujeción directo	1.16
6.3	APARA	TOS DE VÍA	16
	6.2.3	Ensayos y caracterización del sistema de sujeción	15
	6.2.2	Elementos que componen el sistema	14
	6.2.1	Descripción del sistema	13
6.2	VIA EN	PLACA PARA ANCHO MIXTO: VÍA ESTUCHADA	13
	6.1.3	Ensayos y caracterización del sistema de sujeción	12

1 INTRODUCCIÓN

En el presente anejo se define la naturaleza y tipología de los materiales existentes y a emplear en la superestructura del "PROYECTO CONSTRUCTIVO DE LA RED FERROVIARIA INTERIOR DEL PUERTO EXTERIOR DE A CORUÑA". Son detalladas sus principales características de acuerdo a la normativa de referencia. Además, el Documento nº2 Planos, incluye planos de detalle de los componentes que integran cada sistema de vía considerado.

Los objetivos primordiales de los diferentes elementos que constituyen la superestructura de la vía son:

- En primer lugar, servir de guía a los trenes durante su desplazamiento.
- En segundo, transmitir las cargas estáticas y dinámicas que soportan las ruedas a la plataforma, a través del conjunto de sus componentes.

Su correcta definición y dimensionamiento vienen condicionados por diversos aspectos como son:

- Situación geográfica
- Trazado, tanto en planta como en alzado.
- Condiciones geológico-geotécnicas del suelo soporte.
- Sistema de explotación previsto para la línea.
- Material rodante previsto en las circulaciones (cargas por eje, velocidades máximas y mínimas, etc.)

2 SITUACIÓN DE PARTIDA

En la actualidad el puerto se encuentra **comunicado**, **por el este**, con la autovía **AC-15**, de nueva construcción, que se conecta con la autopista de peaje AG-55 y **por el sur** con la carretera a Sabón, **DP-0509-4.** El dique este – oeste (norte) está cruzado por un vial interior que se une a las anteriores a través de una glorieta. En la figura siguiente se recoge el esquema de viario actual.

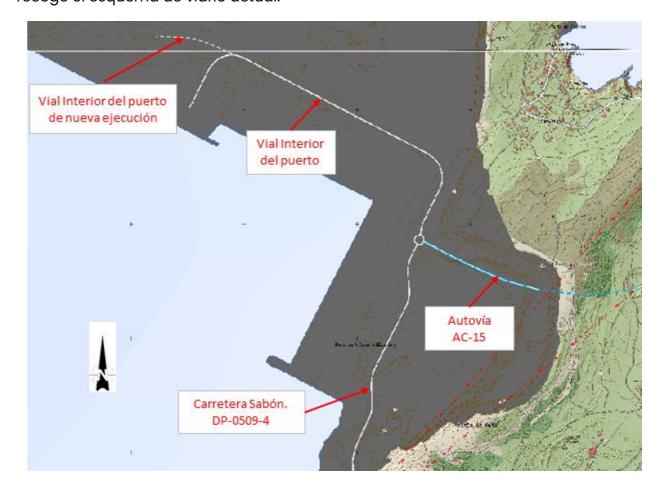


Figura 1. Viario actual en el Puerto

El **Puerto Exterior** está en plena operación, sobre todo en la **zona norte**, donde sus principales operadores, **TMGA**, **Pérez Torres y Galigrain** ya han construido sus naves industriales.

Repsol por otra parte, también está ultimando su traslado al Puerto Exterior, ya ha construido un pantalán de atraque conectado mediante un poliducto con la refinería

Figura 2. Vista de poliducto a las Instalaciones Portuarias de Repsol

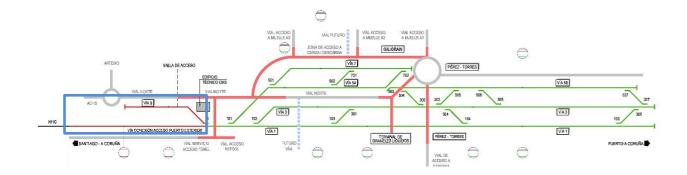
A continuación, se recoge una imagen del estado actual de las instalaciones dispuestas en la explanada portuaria.

Figura 3. Distribución actual de instalaciones en explanada portuaria

La **dársena sur no es objeto de actuación** en este proyecto constructivo y está pendiente, además, de urbanización.

Como infraestructura ferroviaria más cercana se encuentra el Eje Atlántico de Alta Velocidad, al que se pretende conectar el Acceso Ferroviario al Puerto Exterior de A Coruña en Punta Langosteira que dará entrada a la Red Interior Ferroviaria, objeto de este proyecto.

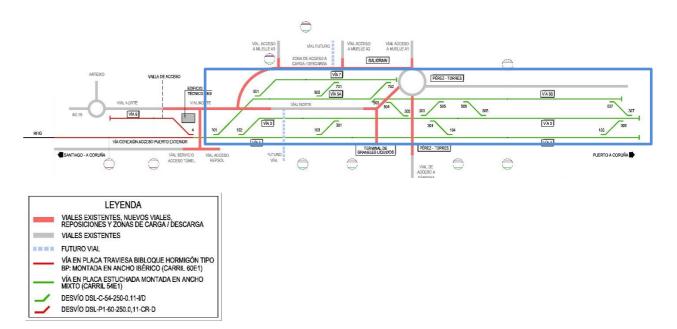
En el anejo nº2. Inventario se muestra un reportaje fotográfico más detallado para mejor ubicación.


3 ACTUACIONES

Este Proyecto Constructivo recoge el diseño de una infraestructura y superestructura completa, apta para permitir las maniobras de los trenes en su ciclo de carga, descarga y transporte de mercancías, en el Puerto de Punta Langosteira. Esta definición alcanza a todas las obras precisas, cuyo alcance son los movimientos de tierras, obras de drenaje, reposición de servidumbres, superestructura ferroviaria, Obra civil de las instalaciones de seguridad y comunicaciones (canaletas, pozos, etc.), instalaciones de obra, de forma que sea posible iniciar la tramitación administrativa de la actuación, previa al inicio de las obras, y la ejecución de estas.

Desde el punto de vista ferroviario el sistema consta de **dos zonas claramente diferenciadas**:

3.1 ACCESO


La primera de ellas es **la zona del acceso**, donde se produce la conexión con el tramo que precede a la infraestructura objeto del presente proyecto, manteniendo la tipología de vía anterior (vía en placa sobre traviesa bibloque polivalente montada en ancho ibérico), disponiendo en esta zona de un mango de maniobras. Asimismo, en esta zona se produce la transición de tipología de vía, pasando de una vía en placa bibloque polivalente a una tipología de vía en placa estuchada montada con tres hilos (ancho mixto). Los aparatos para la tipología de vía en placa polivalente se proyectan polivalentes de radio 250 m y tangente 0,11. Estos además cumplen con los requisitos que se exigen en la ETI de infraestructura.

3.2 PLAYA DE VÍAS

La segunda zona corresponde a la playa de vías, que es donde se realizan las maniobras de los trenes en su ciclo de carga, descarga y transporte de mercancías del Puerto Exterior de A Coruña. Se compone de 4 vías que en inicio se separan en ambas márgenes del vial principal de acceso al Puerto (existente). Las vías 1 y 3 se dispondrán en la margen "tierra" de dicho vial y las vías 5 y 7 en el lado "mar" del mismo.

Al final de la playa de vías se proyecta una plataforma ferroviaria de tres vías. La tipología de vía proyectada para toda la playa de vías se compone una vía en placa estuchada montada en tres hilos (mixta). Los aparatos de vía serán tipo C de radio 250

y tangente 0,11 (interoperables). Estos aparatos de vía estarán embebidos en la placa, limitando circulaciones de tráfico rodado por sus partes móviles.

3.3 ASPECTOS DE LA OPERATIVIDAD DEL PUERTO

La infraestructura ferroviaria operará inicialmente en ancho ibérico, facilitando una futura migración a ancho internacional. El proyecto procurará por tanto limitar por diseño las externalidades y restricciones de esa futura migración de ancho, siendo un diseño compatible para ambos anchos de vía.

En su globalidad, la infraestructura ferroviaria consta de 7,9 km de vía en placa, donde aproximadamente el 80% será embebida, permitiendo por configuración su permeabilidad transversal. Además, el sistema consta de un total de 21 aparatos de vía (desvíos), siendo 1 de ellos polivalente y el resto embebidos en ancho ibérico. Para la futura migración a ancho internacional, estos desvíos embebidos deberán ser sustituidos por unos compatibles con el ancho 1.435 mm.

Esta infraestructura ferroviaria deberá ser compatible con el tráfico rodado del Puerto (tráfico camiones). Para ello se han proyectado 5 intersecciones especiales (IE), las cuales priorizan el tráfico ferroviario y una IE en previsión futura. Además, el sistema constará de un nuevo vial de servicio norte (lateral) en el lado mar de la playa de vías. El objeto del vial es permitir el acceso a las concesiones (operadoras) de esa margen (vías 5 y 7). La sección de este vial consta de dos carriles (uno por sentido) de 3,5 m y tiene una longitud aproximada a 900 m. El proyecto contempla además el diseño y reposición del vial principal (vial Norte) en el inicio de la playa de vías (350 m) y en la zona del entronque del vial norte con la glorieta existente (150 m). Se proyecta un vial de servicio de acceso a la zona de emergencia de la plataforma de emergencia del túnel del acceso al Puerto y finalmente un vial de acceso a las instalaciones de Repsol. Respecto al apartado de estructuras, el proyecto contempla el diseño de un muro de ancho constante de 0,30 m y cimentación directa mediante zapata. Su función es dar

es de 1.203,34 m con una altura variable de valor máximo aproximadamente de 2,50 metros.

Finalmente, el proyecto cuenta con un **Edificio Técnico**, que tendrá el objeto de poder instalar el equipamiento asociado a cada uno de los sistemas involucrados. El sistema dispondrá de una canalización a lo largo de todo el trazado, permitiendo interconectar el Edificio Técnico con las instalaciones previstas en la Red Interior del Puerto. A lo largo de todo el trazado se ha previsto la ejecución de arquetas y pozos de registro cada 50m, con el fin de facilitar el tendido de los cableados empleados para cada una de las instalaciones. Además se incluirán los cruces bajo vía y cruces de calzada. Se han previsto la ejecución de canalizaciones hormigonadas, las cuales interconectarán sendas arquetas a cada lado del cruce.

3.4 COORDINACIÓN CON CMS

En cumplimiento de la NAV 7-1-0.7 apartado 5.13.4 "Compatibilidad electromagnética con los sistemas de señalización", el diseño de vía sin balasto debe tener en cuenta las restricciones de compatibilidad electromagnética entre los diferentes equipos y las construcciones de hormigón armado, en las que se deben evitar los bucles eléctricos que se pueden crear por elementos metálicos.

Los diseñadores de la señalización y de la vía deben diferenciar y acordar los requisitos para las zonas sin bucles y para las zonas con un contenido de metal restringido.

En el momento de desarrollo de este proyecto no se ha realizado el diseño de la señalización ferroviaria, con la ubicación de los circuitos de vía, señales y otros elementos, por lo que es posible cumplir las recomendaciones de la NAV 7-1-0.7.

Tal y como se recoge en el Estudio Previo de Seguridad se establece como condición de aplicación que antes de ejecutar el armado de la vía en placa, se contacte con los responsables de CMS encargados de instalar posteriormente su sistema para, conocida la tecnología del circuito de vía y la tira de bloqueo definitiva, establecer lo siguiente en base a las instrucciones particulares de uso de circuito de vía elegido:

soporte y cerramiento a la plataforma de la línea ferroviaria. La longitud total del muro

- Cajeados requeridos sobre las losas para poder instalar su equipamiento (balizas, motores de aparatos de vía, etc.)
- Longitud efectiva de los circuitos de vía que resultan por la influencia de los refuerzos de acero.
- Posición de los lazos de inicio-fin de circuitos de vía, así como medidas de aislamiento respecto a la armadura de las losas.

4 DEFINICIÓN DE LA PLATAFORMA DE VÍA

Será necesario dimensionar una plataforma sobre la que asentará la vía de la Red Ferroviaria Interior del Puerto Exterior de A Coruña.

Esta plataforma estará conformada principalmente por materiales extraídos del propio Puerto.

La prelosa de la vía en placa apoyará directamente sobre un pedraplén o rellenos con materiales extraídos del propio puerto.

Esta cama de materiales, según las prescripciones descritas en el anejo nº4 Geología y geotecnia del presente Proyecto, deberá tener una zona de transición de 1 metro y asegurar un módulo de deformación en la superficie de contacto con la prelosa de 120 MPa.

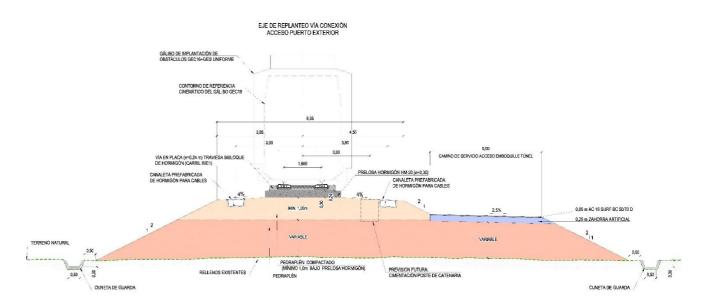


Ilustración 1. Sección tipo vía única ancho polivalente

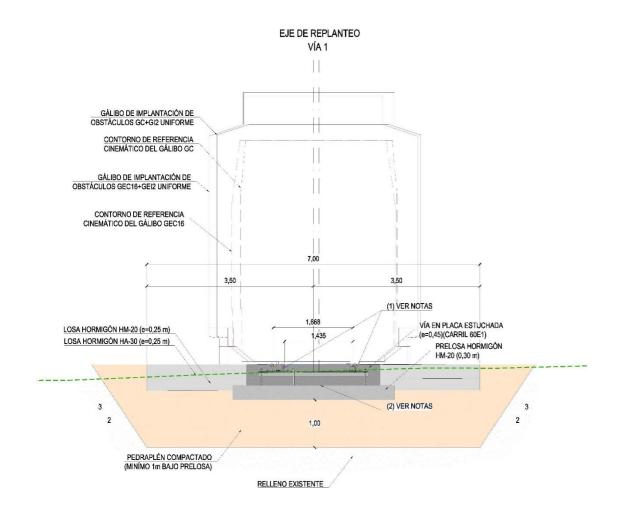


Ilustración 2. Sección tipo vía única ancho mixto. Vía estuchada

5 MATERIALES DE VÍA

5.1 CARRIL 60E1

El carril que se propone en la vía en placa polivalente será del tipo 60 El. Se propone el suministro a obra en barras de 18 metros mediante camión para posteriormente conformar la barra larga soldada mediante soldaduras eléctricas o aluminotérmicas. El suministro en barras de 18 metros se debe a la inexistencia de una conexión ferroviaria que permita el suministro de barras de mayor longitud mediante tren carrilero. El suministro correrá a cargo del contratista.

Las características del carril serán las siguientes:

- Perfil del carril: clase X
- Enderezado: clase A
- Grado del acero: 260 (Carbono-Manganeso)
- Resistencia a tracción: Rm ≥ 880 N/mm²
- Dureza: 260/300 HBW
- Alargamiento: A ≥ 10%
- La inclinación del carril será de 1/20 (tangente del ángulo que forma el eje de simetría de la sección transversal del carril con la perpendicular al plano de la vía).

5.2 CARRIL 54E1

El carril que se propone en la vía estuchada mixta será del tipo 54 El. Se propone el suministro a obra en barras de 18 metros mediante camión para posteriormente conformar la barra larga soldada mediante soldaduras eléctricas o aluminotérmicas. El suministro en barras de 18 metros se debe a la inexistencia de una conexión ferroviaria que permita el suministro de barras de mayor longitud mediante tren carrilero. El suministro correrá a cargo del contratista.

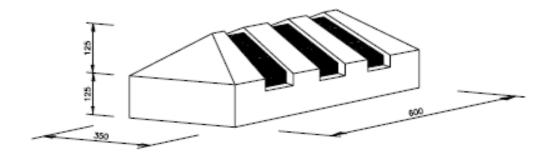
Las características del carril serán las siguientes:

- Perfil del carril: clase X
- Enderezado: clase A
- Grado del acero: 260 (Carbono-Manganeso)
- Resistencia a tracción: Rm ≥ 880 N/mm²
- Dureza: 260/300 HBW
- Alargamiento: A ≥ 10%

Esta tipología de carril se colocará en vía estuchada con inclinación vertical en toda la longitud a excepción de la transición de inclinación de carril detallada en el punto 6.4.2 del presente anejo.

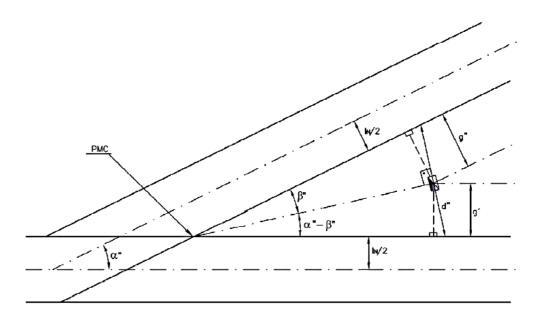
5.3 TRAVIESAS

Las traviesas y elementos de sujeción quedan definidos en el apartado 6.1.2 y 6.2.2 del presente anejo. A continuación se resumen brevemente la tipología a implantar:


- Vía en placa ancho polivalente: Traviesas bibloque polivalentes cada 0,6 m
- Vía en placa estuchada ancho mixto: Perfiles LPN 100x100x10 cada 1,5 m

5.4 PIQUETES DE VÍA

En la vía, el piquete es la señal que indica la posición límite donde debe detenerse la cabeza del tren delante de un desvío o semiescape por el lado del talón, para que sea compatible su posición con la circulación del tren por la otra vía.


Con carácter general la posición del piquete se situará a una distancia de cada vía, mayor o igual que la correspondiente al punto de intersección del gálibo nominal con resguardos de la vía directa con el gálibo nominal sin resguardos de la vía desviada.

En el caso de que la velocidad por vía directa sea igual o inferior a 120 km/h el piquete se podrá situar a una distancia de cada vía, mayor o igual que la correspondiente al punto de intersección del gálibo nominal sin resguardos de la vía directa con el gálibo nominal sin resquardos de la vía desviada, si bien en casos excepcionales debidamente justificados se admitirá la intersección de gálibos límites.

PIQUETE DE VIA LIBRE

El emplazamiento se ha realizado según la siguiente figura:

- Ángulo del desvío. Angulo que define la posición del piquete respecto la vía desviada. Diferencia entre el gálibo considerado en la vía directa y el semiancho de vía nominal. Diferencia entre el gálibo considerado en la vía desviada y el semiancho de vía nominal.
- Ancho de vía nominal
- d": Distancia entre caras internas de carril a la altura del piquete (d"≈ g' + g").

PMC: Punta matemática del corazón del desvío.

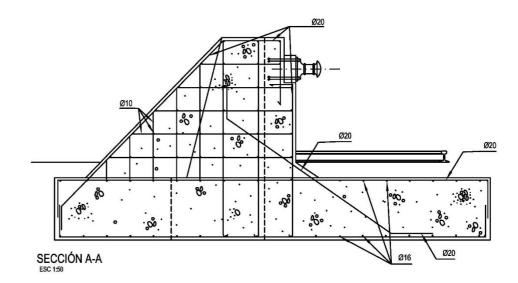
El piquete de carril también podrá ser de otro material al descrito tal como fibra de vidrio, cupón de carril, etc.

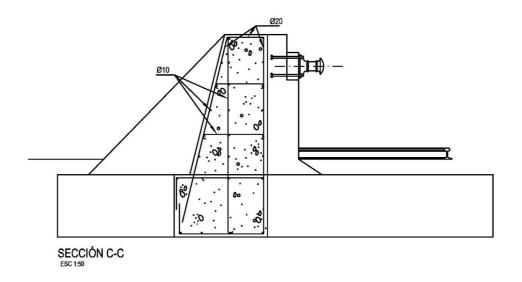
A falta de cálculos específicos se podrá situar el piquete en función del gálibo de las vías directas y desviada teniendo en cuenta los siguientes valores de g' y g": Gálibo GC: g'= 1,45 m y g" = 1,25 m.

Gálibo GEC16: g'= 1,35 m y g" = 1,15 m.

Fuente: Orden FOM 1630/2015 de 14 de Julio por la que se aprueba la Instrucción Ferroviaria de Gálibos.

La posición de los piquetes se puede observar en el plano 2.3.2 Planta de trazado y replanteo.


5.5 TOPERAS


Las toperas son un sistema de atenuación de impactos que se colocan al final de las vías.

Las toperas que se proponen en el presente proyecto serán de hormigón armado y contarán con su correspondiente puesta a tierra

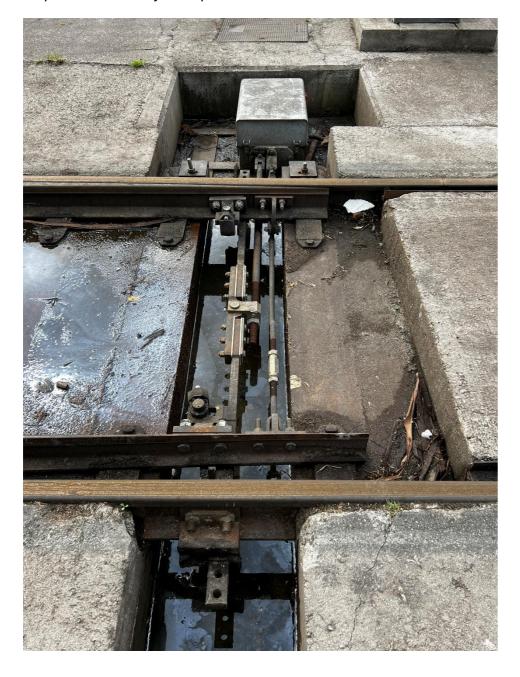
La vía mango de maniobras proyectada finaliza en topera. Se proyectan además toperas al final de las vías 1, 3, 5 y 7, planteándose un total de 5 toperas en el presente proyecto.

La topera seleccionada presenta un ancho de trabajo de 1,95 m, propia de líneas de ancho Ibérico. Se considera que esta topera es compatible con los anchos de la línea proyectada, que es una línea de ancho mixto (1668 y 1435 mm). Si bien es cierto que en el caso del ancho UIC se produciría una pequeña excentricidad respecto al eje de la topera en el momento del impacto, se considera que no se afecta significativamente al comportamiento de la topera.

En el documento nº 2. Planos en el plano 2.6.11 se incluye su definición.

5.6 CAJEADOS PARA MOTORES, BALIZAS Y CONTADORES DE EJES

El cajeado de los motores de los desvíos permite la implantación y conservación de los motores que accionan la aguja del desvío.


Se ejecutarán tantos cajeados como motores sean necesarios, alojándose un motor en cada cajeado.

El cajeado consistirá en una oquedad en la que quedará alojado el motor. Dada la prohibición de la circulación de tráfico rodado sobre la JCA, donde se alojará el motor, el cajeado se tapará con una tapa metálica de protección, no siendo necesario el cálculo de solicitaciones de esfuerzos de esta.

Se balizará la posición del cajeado para evitar la circulación sobre los accionamientos.

5.7 CAJEADOS PARA SISTEMAS DE SEÑALIZACIÓN

El cajeado para albergar las señales bajas maniobras de 2 focos permitirá su ubicación sin que se produzca invasión del gálibo de implantación de obstáculos.

Se ejecutarán tantos cajeados como señales sean necesarias instalar en el entreeje de la vías, que no puedan ser instaladas en el exterior de la plataforma por la disposición particular de las vías y que por la distancia entre vías no sea posible su montaje normal sobre la plataforma sin invadir el gálibo de implantación de obstáculos.

Estos cajeados tendrán unas dimensiones de 0.78x0.78m en planta y una profundidad de 0.25m, de tal manera que el minimástil de las señales quede por debajo del nivel de la plataforma y que ambos focos queden visibles por encima del nivel de la plataforma sin invadir el gálibo de implantación de obstáculos.

5.8 RESUMEN DE MATERIALES DE VÍA

Todos los materiales de vía correrán a cargo del contratista, mostrándose a continuación un resumen de los materiales necesarios para el montaje de la superestructura:

Resumen	Medición	Unidad
Traviesa biboque polivalente	777	ud
Perfil metálico LPN 100x100x10 con sujeción soldable	4102	ud
Carril 54E1	991,65	t
Carril 60E1	55,78	t
Cupones mixtos	3	ud
DSL-P1-60-250-0,11-CR-D	1	ud
DSL-C-54-250-0,11-CR-D	9	ud
DSL-C-54-250-0,11-CR-I	11	ud
Piquetes	21	ud

6 VÍA EN PLACA

Se proponen en el presente proyecto diferentes secciones (o tipologías) de vía en placa en dos zonas perfectamente limitadas.

Así, y desde el punto de vista ferroviario, se distinguen dos zonas claramente diferenciadas. La primera de ellas es la zona del acceso, donde se produce la conexión con el tramo que precede a la infraestructura objeto del presente proyecto, manteniendo la tipología de vía anterior (vía en placa sobre traviesa bibloque polivalente montada en ancho ibérico), disponiendo en esta zona de un mango de maniobras. La segunda zona corresponde a la playa de vías, donde se dispondrá de vía en placa estuchada para ancho mixto. Todo ello en previsión de una futura explotación del puerto en ancho estándar (1435 mm).

Adicionalmente se prevé la instalación de aparatos de vía de diferentes tipologías en función de la zona de instalación. Todo ello se detalla a continuación:

 Vía en placa con traviesas bibloque, monolíticamente integradas en un pavimento de hormigón en ancho polivalente, tipo bibloque; para las vías de conexión a la Dársena Norte.

Tabla 1. Vía con traviesa bibloque (polivalente)

VIAS (1)		Eje	PI	(s	L (m)
1	Conexión dársena norte	30	0+000,000	0+320,000	320,000
-	Vía mango de seguridad	31	0+000,000	0+054,083	54,083
9	Vía 9 (Conex. Norte-Sur)	32	0+000,000	0+213,000	213,000

(1) Montado en Ancho Convencional (1.668 mm)

TOTAL (m) 587,083

Fuente: elaboración propia

 Vía en placa del tipo estuchado, en ancho mixto; para la playa de vías de la Dársena Norte.

Vía estuchada (mixta)

	VIAS ⁽²⁾ Eje Pk´s		L (m)		
1	Conexión dársena norte	33	0+000,000	2+099,342	2099,342
3	Vía 3	34	0+000,000	1+791,273	1791,273
5	Vía 5 (tramo 1)	35	0+000,000	1+083,953	1083,953
5	Vía 5 (tramo 2)	36	0+000,000	1+065,941	1065,941
7	Vía 7	37	0+000,000	0+905,334	905,334

(2) Montado en ambos anchos (1.435 / 1.668 mm)

TOTAL (m)	6.945,843

Fuente: elaboración propia

- Aparatos de vía:
 - Aparato de vía en placa con sujeción directa al pavimento, en ancho polivalente (montado en ibérico, 1668 mm), para las vías de conexión a la Dársena Norte.

Tabla 2. Aparato de vía con sujeción directa

PKS SOBR	RE EL EJE PRINCIPAL	
J.C.A.	JUNTA C.A.	MATRICULA
N°	PK	
4	0+312,645	DSL-P1-60-250-0,11-CR-D

Fuente: elaboración propia

 Aparatos de vía estuchados, en ancho ibérico (1668 mm), para la playa de vías de la Dársena Norte.

Tabla 3. Aparatos de vía estuchados

PKS SOBRE EL EJE PRINCIPAL			
J.C.A.	JUNTA C.A.	MATRICULA	
N°	PK		
102	0+303,096	DSL-C-54-250-0.11-CR-I	
101	0+037,403	DSL-C-54-250-0.11-CR-I	
702	0+855,334	DSL-C-54-250-0.11-CR-I	
503	0+941,155	DSL-C-54-250-0,11-CR-D	
501	0+228,625	DSL-C-54-250-0.11-CR-I	
103	0+780,529	DSL-C-54-250-0.11-CR-I	
301	0+545,904	DSL-C-54-250-0.11-CR-I	
502	0+616,806	DSL-C-54-250-0.11-CR-I	
701	0+467,627	DSL-C-54-250-0.11-CR-I	
302	0+927,643	DSL-C-54-250-0,11-CR-D	
504	0+167,558	DSL-C-54-250-0,11-CR-D	
303	0+995,074	DSL-C-54-250-0.11-CR-I	
505	0+371,559	DSL-C-54-250-0.11-CR-I	
104	1+406,378	DSL-C-54-250-0,11-CR-D	
304	1+035,184	DSL-C-54-250-0,11-CR-D	
506	0+522,048	DSL-C-54-250-0,11-CR-D	
305	1+295,462	DSL-C-54-250-0,11-CR-D	
306	1+704,163	DSL-C-54-250-0.11-CR-I	
105	1+933,038	DSL-C-54-250-0.11-CR-I	
307	1+744,273	DSL-C-54-250-0,11-CR-D	

Fuente: elaboración propia

6.1 VÍA EN PLACA PARA ANCHO POLIVALENTE: TRAVIESAS BIBLOQUE

6.1.1 DESCRIPCIÓN DEL SISTEMA

El sistema de vía sin balasto seleccionado está basado en traviesas bibloque monolíticamente integradas en un pavimento de hormigón, sobre una capa base (o prelosa) construida igualmente a base de hormigón; de acuerdo con la norma UNE-EN 16432-2. 2018. Aplicaciones ferroviarias. Sistemas de vía sin balasto. Parte 2: Diseño del sistema, subsistemas y componentes.

Este sistema se corresponde con la TIPOLOGÍA 4. "Sistemas integrados, monolíticamente, en el pavimento", conforme a la norma NAV 7-1-0.7. "Diseño y montaje de vía sin balasto para obra nueva" (1º Edición: enero 2021).

Las traviesas bibloque serán de hormigón armado y garantizarán la adecuada operación de las circulaciones en ancho polivalente (estándar y convencional).

Las características de la sección se resumen en:

Ancho vía: Polivalente 1.435 o 1.668 mm.

Losa HA30

Ancho 2800 mm
 Espesor 240 mm

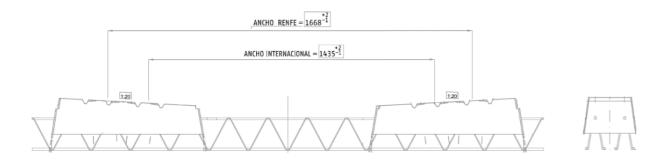
Prelosa HM20

Ancho 3400 mm
 Espesor 300 mm

Infraestructura

Pedraplén compactado (espesor mínimo 1,00 m)

Se pueden ver más detalles en el plano 2.6.5 del Documento nº 2 Planos



6.1.2 ELEMENTOS QUE COMPONEN EL SISTEMA

Con objeto de adaptarse a la operación prevista para el presente proyecto, las traviesas bibloque polivalente se presentarán en la siguiente configuración:

Figura 4. Ancho polivalente (1.668 mm ó 1.435 mm) – PAV 02_01.02.002:

Fuente: elaboración propia

Las características generales de las traviesas bibloque estarán de acuerdo a la Norma de referencia NAV 7-1-0.7. "Diseño y montaje de vía sin balasto para obra nueva" (1º Edición: enero 2021), en consonancia con la UNE-EN 16432-2. Adicionalmente, se muestran a continuación las siguientes prescripciones para estos elementos prefabricados:

- Carril 60 E1, inclinado 1/20.
- Ancho de vía sobre el elemento montado: traviesas polivalentes: 1.435 mm ó 1.668
 mm (elementos de fijación dispuestos en ancho 1668 mm).
- Resistencia a la compresión del hormigón: perteneciente a la clase C 50/60 o a la clase 45/55.
- Dosificación mínima de cemento fijada en 300 kg/m³.
- Relación agua/cemento inferior a 0,45.
- Se deberán tomar precauciones en la elección de los componentes, para áridos que contengan algún tipo de sílice susceptible de ser atacada por álcalis.

Las nuevas traviesas se dispondrán con sus ejes longitudinales perpendiculares al eje de vía y distanciadas 0,65 m entre ejes de traviesas.

6.1.3 ENSAYOS Y CARACTERIZACIÓN DEL SISTEMA DE SUJECIÓN.

Las sujeciones montadas sobre los elementos prefabricados serán del tipo SM (PAV 01_01.06.000_ED1), que cumplirán las condiciones y requerimientos técnicos para su instalación en las traviesas biblioque para vía sin balasto con carril 60E1.

El conjunto de la sujeción será válido tras el cumplimiento de los requisitos de la categoría C, según define la UNE-EN 13481-5. "Aplicaciones ferroviarias. Vía. Requisitos de funcionamiento para los conjuntos de sujeción. Parte 5: Conjuntos de sujeción para vía en placa sin balasto o vía con carril embutido en un canal", en su apartado 1.

Asimismo, deberá dar cumplimiento a lo especificado en la serie completa de ensayos descritos en la UNE-EN 13146 "Aplicaciones Ferroviarias – Vía – Métodos de ensayo de los sistemas de fijación".

Así, el sistema de sujeción:

- Tiene que estar diseñado para soportar la combinación de 22,5 t/eje de carga circulando a la velocidad máxima del proyecto.
- Tendrá una rigidez dinámica a baja frecuencia dentro del rango 30-50 kN/mm, medida según UNE-EN 13146-9, a 10 Hz y temperatura ambiente.
- Dispondrá de una capacidad de regulación geométrica mínima, una vez hormigonada la vía, de acuerdo con los siguientes valores:

Tabla 4. Sección tipo 1. Vía con traviesa bibloque

REGUL	REGULACIÓN		
	Positiva	+ 25 mm	
Vertical	Negativa	-4 mm	
Horiz	Horizontal		

Fuente: elaboración propia

El sistema permitirá que la altura libre mínima entre el patín del carril, una vez montado sobre el sistema, y la cara superior de la losa de hormigón sea de al menos 40 mm.

Todos los elementos metálicos del sistema de sujeción deberán estar protegidos contra la corrosión en toda su superficie mediante un tratamiento que garantice una durabilidad mínima de 10 años en condiciones de humedad muy alta, se tendrá en cuenta que deberá ser apto para soportar las condiciones ambientales tipo C3 según la norma ISO 9923, o categorías superiores.

6.2 VIA EN PLACA PARA ANCHO MIXTO: VÍA ESTUCHADA

6.2.1 DESCRIPCIÓN DEL SISTEMA

La vía en placa estuchada se compone de una serie de perfiles metálicos sobre los que se apoyan los carriles, los cuales quedan fijados a dichos perfiles mediante clips soldados a estos.

El conjunto será hormigonado hasta la cota cabeza carril dejando libre la rodadura para el paso de rueda del tráfico ferroviario. Esta configuración permitirá la total transversalidad del tráfico rodado, lo cual facilitará las circulaciones tanto en el cruce de carreteras, como en las operaciones propias de manipulación de materiales en la zona portuaria.

Dicha capa de hormigón será vertida en dos fases: la primera de ellas en la que los pernos de anclaje de los perfiles metálicos quedarán embebidos; y la segunda fase de hormigonado, será la que finalmente llegue hasta el plano de rodadura, tal y como se ha indicado con anterioridad.

Con objeto de dejar libre el paso de rueda, será preciso disponer de una acanaladura en el pavimento de hormigón, en la parte interna del carril, como se puede ver más adelante en los esquemas presentados. Para su configuración será necesario disponer de un material tipo rastrel o similar que sirva de encofrado para la configuración de dicha hendidura, la cual tendrá una profundidad mínima de 40 mm, con un ancho de no menos de 50 mm.

Las características de la sección se resumen en:

Ancho vía: Mixto 1.435 / 1.668 mm.

Losa HA30

Ancho 2800 mm
 Espesor 450 mm

Prelosa HM20

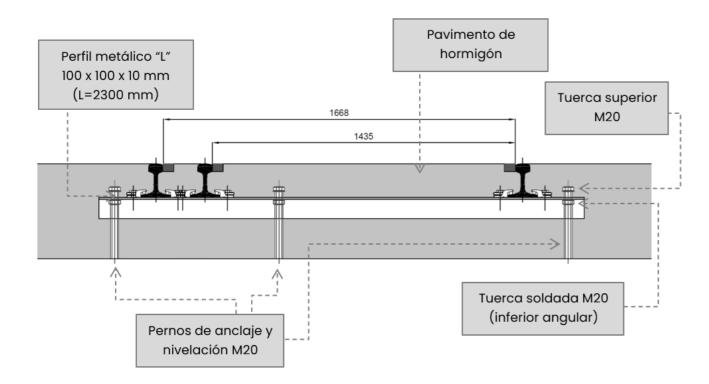
Ancho 3400 mm
 Espesor 300 mm

Infraestructura

Pedraplén compactado (espesor mínimo 1,00 m)

Se pueden ver más detalles en el plano 2.6.6 hojas 1 a 3 del Documento nº 2 Planos.

La construcción de una prelosa bajo el pavimento, o losa principal, ofrecerá al sistema de vía en placa una serie de ventajas que mejorarán su comportamiento mecánico a largo plazo, constituyendo así un sistema de vía sin balasto mediante un pavimento multicapa, homólogo al previsto para las zonas de acceso a la Dársena Norte (vía en placa con traviesas bibloque monolíticamente integradas en un pavimento de hormigón).


Con esta configuración, además de contar con un apoyo geométricamente adecuado para la disposición de los elementos de alineación y nivelación del emparrillado de la vía antes del hormigonado, la sección proyectada contará con una capa intermedia de soporte para la losa principal.

Esta capa, de rigidez intermedia entre la losa principal y la infraestructura (constituida principalmente por un relleno de saneo, ver ANEJO Nº 4 GEOLOGÍA Y GEOTECNIA), favorecerá el óptimo reparto de las cargas ferroviarias hacia las capas inferiores, minimizando posibles apariciones de asientos diferenciales en el relleno que interferirían en el adecuado apoyo del sistema de vía sin balasto, y en último caso puedan provocar fallos en la losa principal.

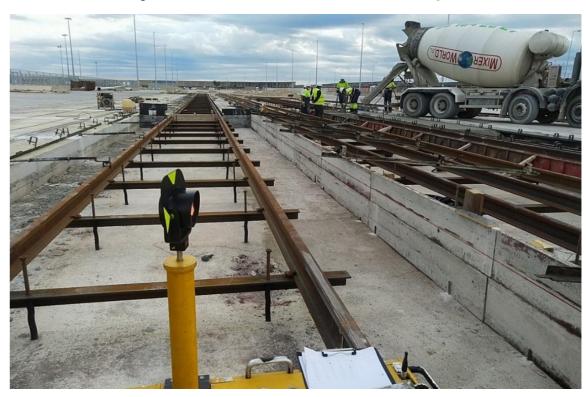


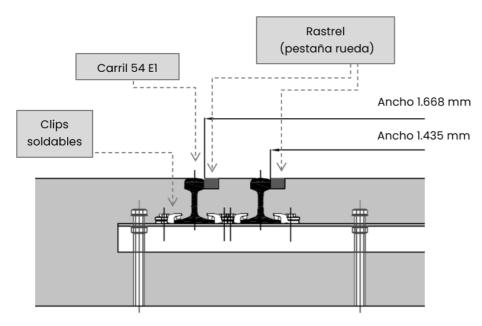
Figura 5. Esquema sistema de vía estuchada

Fuente: elaboración propia

Figura 6. Sistema de vía estuchada (antes del hormigonado)

6.2.2 ELEMENTOS QUE COMPONEN EL SISTEMA

Los elementos principales que componen el sistema de vía estuchada previsto para el presente proyecto son los siguientes:


- Carril 54El (1/∞ o carril vertical).
- Carril 60E1 (1/20, 1/40, 1/80 y 1/∞ o carril vertical), para las zonas de transición (ver detalles en la sección 6.4.2 Transición de inclinación y tipología del carril).
- Ancho de vía sobre el elemento montado para la explotación en ancho mixto:
 - Ancho de vía 1.668 mm y ancho 1.435 mm, simultáneamente.
- Perfil metálico normalizado L 100x100x10, de 2300 mm de longitud, colocados cada
 1,5 m, con taladros para pernos (M20) de 24 mm de diámetro.
- Elementos de sujeción de carril soldables, para su fijación al perfil metálico.
- Pernos de anclaje y nivelación M20 con tuerca en la cabeza superior.
- Tuercas M20 soldadas al inferior del angular (soldada).

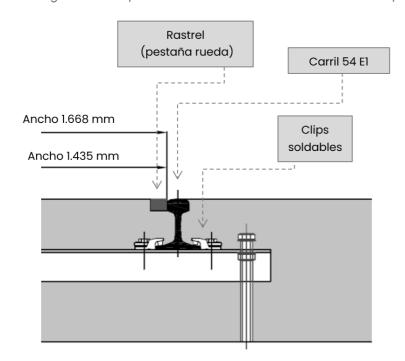


Figura 7. Esquema sistema de vía estuchada: detalle hilo doble.

Fuente: elaboración propia

Figura 8. Esquema sistema de vía estuchada: detalle hilo simple.

Fuente: elaboración propia

Figura 9. Perfil metálico (montaje vía estuchada)

6.2.3 ENSAYOS Y CARACTERIZACIÓN DEL SISTEMA DE SUJECIÓN.

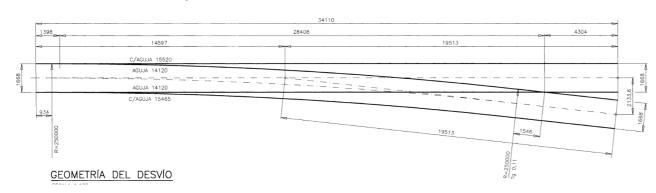
Las prescripciones técnicas para estos elementos de fijación de carril, soldados al perfil metálico, son las siguientes:

- La distancia entre puntos de fijación de carril será de 1,50 m, coincidiendo con el espaciado entre perfiles metálicos.
- Los clips colocados mantendrán la posición del carril por medio de un bloqueo mecánico.
- Los clips dispondrán de reglaje lateral de al menos 10 mm (+/-5 mm) que facilite el montaje, permitiendo posibles correcciones de la geometría de la vía antes del hormigonado.
- Calidad de la tornillería: 8.8 (resistencia máxima a tracción 800 N/mm2) o superior.
- Par de apriete 75 N.m (sin sobrepasar el límite de 100 N.m)
- Capacidad de carga lateral de al menos 65 kN.

6.3 APARATOS DE VÍA

Los nuevos aparatos para instalar serán de dos tipos:

- Aparato de vía en placa con sujeción directa al pavimento, en ancho polivalente (montado en ibérico, 1668 mm), para las vías de conexión a la Dársena Norte.
- Aparatos de vía estuchados, en ancho ibérico (1668 mm), para la playa de vías de la Dársena Norte.


6.3.1 ZONAS DE ANCHO POLIVALENTE: APARATOS DE VÍA CON SUJECIÓN DIRECTA

6.3.1.1 Descripción del sistema

Los aparatos de vía en placa estarán armados con sistemas de fijación directos a la losa (o pavimento), de baja rigidez. Así, estarán configurados a base de placas metálicas adherizadas con material elastomérico o tipo sándwich con PAD´S de material igualmente elastomérico. Se trata, en cualquier caso, de un sistema de vía sin balasto con asientos de carril discretos sobre pavimento de hormigón, de acuerdo con la sección 5.2.2.4 de la normativa de referencia UNE-EN 16432-2 "Aplicaciones ferroviarias Sistemas de vía sin balasto Parte 2: Diseño del sistema, subsistemas y componentes". Tipología 5. El modelo contemplado es el siguiente:

DSL-P1-60-250-0,11-CR-D

Figura 10. Geometría aparato tipo DSL-P1-60-250-0,11-CR-D

Fuente: ADIF

6.3.1.2 Elementos que componen el sistema

En general el sistema mencionado constará de, al menos, los siguientes componentes:

- Carril 60 E1 (R260H), inclinado 1/20 (en todo el camino de rodadura).
- Ancho de vía sobre elemento montado: placas para ancho polivalente 1.435 mm ó 1.668 mm (montado en 1668 mm).
- Fijación directa a la losa de hormigón a través de placas elásticas.
- Sujecion de carril elástica indirecta en todos los puntos (incluyendo interior de contraaguja), tipo skl12 o similar.
- Para las zonas del cruzamiento, dispondrá de una serie de placas especiales capaces de alojar los carriles de manera simultánea en vía directa y desviada.
- Dispondrá de elementos para la regulación del conjunto, con sistemas de ajuste que permita la corrección de la placa una vez anclada.
- Insertos de anclaje para hormigonar en losa.
- Resbaladeras: permitirán la sujecion interior de la contraaguja, sin engrase y se emplearán rodillos.

6.3.1.3 Ensayos y caracterización del sistema de sujeción

El sistema de vía en placa tipo sujeción directa al pavimento, estará de acuerdo con las prescripciones establecidas en la norma de referencia NAV 7-1-0.7. "Diseño y montaje de vía sin balasto para obra nueva" (1º Edición: enero 2021), en consonancia con la UNE-EN 16432-2. "Aplicaciones ferroviarias. Sistemas de vía sin balasto. Parte 2: Diseño del sistema, subsistemas y componentes".

Como conjunto de sujeción será válido tras el cumplimiento de los requisitos de la categoría C, según define la UNE-EN 13481-5 "Aplicaciones ferroviarias. Vía. Requisitos de funcionamiento para los conjuntos de sujeción. Parte 5: Conjuntos de sujeción para vía en placa sin balasto o vía con carril embutido en un canal", en su apartado 1.

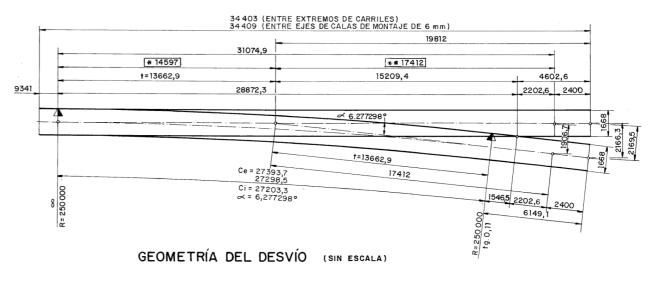
Así mismo deberá dar cumplimiento a lo especificado en la serie completa de ensayos descritos en la UNE-EN 13146 "Aplicaciones Ferroviarias – Vía – Métodos de ensayo de los sistemas de fijación".

El sistema tiene que estar diseñado para soportar la combinación de 22,5 t/eje de carga circulando a la velocidad máxima del proyecto.

El sistema de sujeción previsto para el siguiente proyecto tendrá:

- una rigidez estática del conjunto de 25-30 kN/mm, medida según UNE-EN 13146-9.
- una rigidez dinámica del conjunto de 30-40 kN/mm, medida según UNE-EN 13146 9, a 10 Hz y temperatura ambiente.
- Ratio entre rigideces dinámica y estática medidas según se indica en los puntos anteriores no superior a 1,4.
- Regulación lateral de carril (sobreanchos) de ±5mm en los dos hilos de forma independiente.
- Regulación vertical del carril: el sistema debe permitir una regulación vertical de +/- 10 mm

6.3.2 ZONAS DE ANCHO MIXTO: APARATOS ESTUCHADOS


6.3.2.1 Descripción del sistema

Estos aparatos de vía en placa estarán constituidos por perfiles metálicos sobre los que irán soldados los elementos de fijación de los carriles (y partes metálicas del aparato), tal y como se prevé en las vías contiguas al aparato (vía estuchada). De esta manera el aparato quedará embebido en el hormigón del pavimento, permitiendo así su transitabilidad, tomando siempre la precaución de evitar el paso por las partes móviles del mismo.

Todos los aparatos estuchados serán de tipo C, cuya denominación será la siguiente:

DSL-C-54-250-0.11-I/D

Fuente: ADIF

6.3.2.2 Elementos que componen el sistema

Los elementos principales que componen el sistema de vía estuchada para aparatos, será similar al previsto para las vías contiguas:

- Carril 54E1 (vertical).
- Ancho de vía sobre el elemento montado para la explotación en ancho de vía 1.668
 mm.
- Perfil metálico L 100x100x10, con taladros para pernos (M20) de 24 mm de diámetro.
- Elementos de sujecion de carril soldables, para su fijación al perfil metálico.
- Pernos de anclaje y nivelación M20 con tuerca en la cabeza superior.
- Tuercas M20 soldadas al inferior del angular.

Para su instalación y nivelación será necesaria la instalación de pernos de nivelación y tensores de alineación, procediéndose de análogo modo que para el montaje de vía.

El aparato se recibe de taller premontado, y se coloca en obra en cuatro partes que posteriormente se sueldan. En la zona de las agujas, se soldarán elementos metálicos que las protegerán durante la fase de hormigonado,

6.3.2.3 Ensayos y caracterización del sistema de sujeción.

Las prescripciones técnicas para estos elementos de fijación de carril, soldados al perfil metálico, son las siguientes:

- Los puntos fijación de carril coincidirán con el espaciado entre perfiles metálicos.
- Los clips colocados mantendrán la posición del carril por medio de un bloqueo mecánico.
- Los clips dispondrán de reglaje lateral de al menos 10 mm (+/-5 mm) que facilite el montaje, permitiendo posibles correcciones de la geometría de la vía antes del hormigonado.
- Calidad de la tornillería: 8.8 (resistencia máxima a tracción 800 N/mm2) o superior.
- Par de apriete 75 N.m (sin sobrepasar el límite de 100 N.m)
- Capacidad de carga lateral de al menos 65 kN.

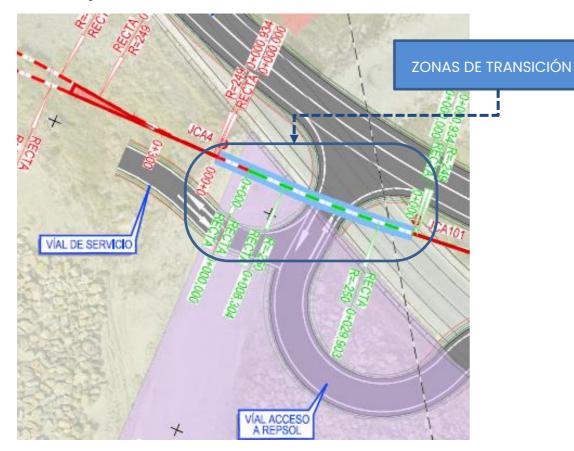
6.3.3 RESUMEN DE DESVÍOS

A continuación se incluye una tabla resumen de los desvíos a colocar, indicando su JCA y su tipología:

JCA	Matrícula
4	DSL-P1-60-250-0,11-CR-D
102	DSL-C-54-250-0,11-CR-I
101	DSL-C-54-250-0,11-CR-I
702	DSL-C-54-250-0,11-CR-I
503	DSL-C-54-250-0,11-CR-D
501	DSL-C-54-250-0,11-CR-I
103	DSL-C-54-250-0,11-CR-I
301	DSL-C-54-250-0,11-CR-I
502	DSL-C-54-250-0,11-CR-I
701	DSL-C-54-250-0,11-CR-I
302	DSL-C-54-250-0,11-CR-D
504	DSL-C-54-250-0,11-CR-D
303	DSL-C-54-250-0,11-CR-I
505	DSL-C-54-250-0,11-CR-I
104	DSL-C-54-250-0,11-CR-D
304	DSL-C-54-250-0,11-CR-D
506	DSL-C-54-250-0,11-CR-D
305	DSL-C-54-250-0,11-CR-D
306	DSL-C-54-250-0,11-CR-I
105	DSL-C-54-250-0,11-CR-I
307	DSL-C-54-250-0,11-CR-D
507	DSL-C-54-250-0,11-CR-D

6.4 ZONAS DE TRANSICIÓN

Con objeto de ejecutar la transición entre ambas tipologías de vía sin balasto será preciso abordar las siguientes tareas:


- Adaptar las secciones de vía.
- Adaptar la inclinación del carril.

Adaptar la tipología de carril.

Figura 12. Zona de transición entre sistemas de vía sin balasto

6.4.1 ENTRE SECCIONES DE VÍA SIN BALASTO

La instalación de dos tipologías de vía en placa diferentes hace que se presenten dos configuraciones distintas de sección tipo, con diferentes espesores en sus capas de formación. Es por ello por lo que será preciso el estudio particularizado de la adaptación de una sección a otra, con objeto de que la transición entre ambos paquetes de vía sea lo más homogénea posible, no habiendo saltos bruscos en la configuración de la sección tipo.

Para ejecutar la adaptación de la sección de **vía en placa para ancho polivalente con traviesas bibloque**, a la sección de **vía en placa para ancho mixto (vía estuchada)**, se prevé una transición de las capas de formación a lo largo de un mínimo de 5,0 m.

La adaptación entre ambos paquetes de vía se realizará en los primeros metros de la vía estuchada de acuerdo a la configuración descrita en el plano de detalle que se puede ver en el DOCUMENTO 2. PLANOS.

Por otro lado, y dada la configuración de los sistemas de vía sin balasto mediante losas continuas, será necesario prever una junta de dilatación entre ambos paquetes de vía. Dicha junta de dilatación será de tipo cerrada, con un relleno de material elastomérico flexible capaz de absorber los movimientos relativos y en consecuencia las posibles tensiones que puedan producirse entre ambos paquetes de vía, en la zona de interfaz. Esta junta tendrá un espesor de entre 30 y 50 mm, con una profundidad que abarcará al completo la losa y la prelosa de ambos paquetes de vía, hasta la obra de tierra. Dicha junta será sellada al colocarse; de esta forma se evita que el agua, la tierra u otros agentes externos puedan introducirse en ella, afectando a su durabilidad.

6.4.2 TRANSICIÓN DE INCLINACIÓN Y TIPOLOGÍA DEL CARRIL

Por otro lado, y dado que las tipologías de vía en placa previstas poseen elementos de fijación con diferente tipo de carril e inclinación, también será necesario el estudio particular de la transición a nivel de superestructuras para hacer esta adaptación lo mas homogénea posible.

Tabla 5. Tipologías de vía (carril / inclinación)

TIPO DE VÍA	MATERIAL	Carril	Inclinación
Vías de conexión a la Dársena Norte.	Traviesa bibloque polivalente	60E1	1/20
Playa de vías de la Dársena Norte.	Vía estuchada, perfil metálico LPN 100x100x10 (fijación soldable)	54E1	1/∞

Fuente: Elaboración propia

Si bien son posibles varias configuraciones para materializar ambas transiciones, se ha optado por disponer en primer lugar de la "transición de inclinaciones" y, más adelante, de la "transición de la tipología de carril". De esta manera conseguiremos

separar las soldaduras del cupón mixto (previsto para el cambio de tipología de carril), de la interfaz entre las dos tipologías de vía en placa previstas, deslocalizando ambos puntos singulares en la continuidad de la vía, y ofreciendo así un mejor comportamiento mecánico del conjunto.

En cuanto a la localización exacta del cupón mixto también se ha tenido en cuenta evitar su colocación en la zona en curva, de radio relativamente reducido (R=250 m), y de la misma forma, evitar su emplazamiento en la zona de cruce con el tráfico rodado. Con ello evitaremos que el cupón mixto, así como sus soldaduras se vean sometidas a sobrecargas, principalmente en sentido transversal, bien sean provenientes del propio tráfico ferroviario, o del tráfico rodado en el cruce a nivel que discurre a través de la mencionada zona en curva.

TRANSICIÓN DE INCLINACIÓN

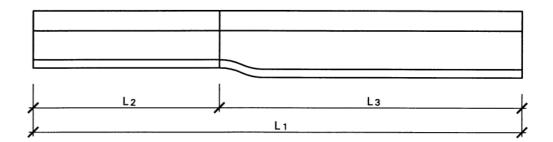
Se trata de un tramo de vía dispuesto al inicio de la vía estuchada que permite la transición de inclinación del carril desde la inclinación 1/20 de la vía contigua (vía en placa con traviesa bibloque), hasta la inclinación nula (carril vertical) prevista para la playa de vías de la Dársena Norte, con vía sin balasto tipo estuchada. Por tanto, será el interfaz entre ambas vías sin balasto donde se realice la transición de la inclinación del carril, sobre los primeros metros de la vía estuchada.

Con objeto de materializar esta transición en la inclinación del carril, se dispondrán una serie de placas metálicas de forma que la inclinación de los carriles varíe del 1/20 al carril vertical. Las placas serán de acero laminado, irán soldadas al perfil metálico y dotarán al carril de la inclinación necesaria mediante la variación del espesor de esta en la zona de apoyo del patín del carril.

Para ello se prevé la siguiente configuración de placas metálicas de inclinación. Se dispondrán ocho placas por hilo, distribuidas de la siguiente manera. Partiendo de la zona con traviesa bibloque y hacia la playa de vías de la Dársena Norte:

- 2 placas con inclinación 1/20.
- 4 placas con inclinación 1/40.
- 2 placas con inclinación 1/80.

Figura 13. Placas metálicas de inclinación


TRANSICIÓN DE TIPOLOGÍA DE CARRIL

La transición entre las diferentes tipologías de carril previstas en el presente proyecto se realizará a través de la incorporación de cupones mixtos de carril.

Los cupones mixtos están formados por dos trozos de carril de diferente peso. En el presente proyecto, se dispondrán cupones mixtos de carril para las transiciones de carril 60El a carril 54El. Estos cupones serán de 6 metros de longitud.

A continuación, se muestra un esquema de estos.

Figura 14. Esquema cupón mixto 54/60

VÍA 54 / 60						
AAA TRÍOLU A		LONGITUDES		1111 O A OTTIVO		
MATRÍCULA	L ₂	Lз	L ₁	HILO ACTIVO		
60.108.650	2.997	2.997	5.994	DERECHO		
60.108.651	2.997	2.997	5.994	IZQUIERDO		

Fuente: ADIF

En definitiva, y para materializar ambas transiciones, será necesario disponer del siguiente material:

Tabla 6. Disposición y materiales para transición (inclinación y carril)

TIPO DE VÍA	MATERIAL	Unidades		
Vías de conexión a la Dársena Norte.	Traviesa bibloque polivalente	Traviesa bibloque polivalente BP 1/20		
,	Perfil metálico LPN 100x100x10 con elemento de fijación soldable, carril 60E1, inclinación 1/20	L60, 1/20	2	
TRANSICIÓN DE INCLINACIÓN (12,00 m)	Perfil metálico LPN 100x100x10 con elemento de fijación soldable, carril 60E1, inclinación 1/40	L60, 1/40	4	
(12,00111)	Perfil metálico LPN 100x100x10 con elemento de fijación soldable, carril 60E1, inclinación 1/80	L60, 1/80	2	
Zona intermedia entre transiciones Perfil metálico LPN 100x100x10 con elemento de fijación soldable, carril 60E1, vertical		L60, 1/∞	12	
TRANSICIÓN DE TIPOLOGÍA DE CARRIL	Perfil metálico LPN 100x100x10 con elemento de fijación soldable, carril 60E1, vertical	L60, 1/∞	2	
(6,00 m)	Perfil metálico LPN 100x100x10 con elemento de fijación soldable, carril 54E1, vertical	L54, 1/∞	2	
Playa de vías de la Dársena Norte.	Perfil metálico LPN 100x100x10 con elemento de fijación soldable, carril 54E1, vertical	L54, 1/∞		

Fuente: elaboración propia

Todos los detalles sobre su disposición en vía se pueden ver, a modo de esquema, en el Documento 2. Planos.

APÉNDICE I. CÁLCULO DE VÍA EN PLACA

INDICE

1	INT	RODUCCIÓN Y OBJETO'				
2	BAS	ES DE C	ÁLCULO	•		
	2.1	NORM	ATIVA DE APLICACIÓN			
		2.1.1	Normas de acciones:			
		2.1.2	Normas de materiales	••		
		2.1.3	Otras normativas y recomendaciones de aplicacion:	. 2		
	2.2	CAPAS	DE APOYO			
2.3 MATERIALES						
		2.3.1	Hormigón y Acero	. 2		
		2.3.2	Niveles de control establecidos	. 2		
		2.3.3	Coeficientes parciales de seguridad para la resistencia	. 3		
	2.4	PROGR	RAMAS DE CÁLCULO	. 3		
	2.5	ACCIO	NES	. 3		
	2.6	VALOR	ES REPRESENTATIVOS DE LAS ACCIONES	. 5		
		2.6.1	Acciones permanentes (G)	.5		
		2.6.2	Acciones permanentes de valor no constante (G*)	.5		
		2.6.3	Acciones variables (Q)	.5		
		2.6.4	Acciones accidentales (A)	.5		
	2.7	VALOR	ES DE CÁLCULO DE LAS ACCIONES	. 5		
		2.7.1	Estados Límite Último (E.L.U.)	.6		
		2.7.2	Estados Límite de Servicio (E.L.S.)	.6		

	2.8	COMB	BINACIÓN DE ACCIONES	6
		2.8.1	Estados Límite Último (E.L.U.)	6
		2.8.2	Estados Límite de Servicio (E.L.S.)	
3	VÍA	GENER	AL. DIMENSIONAMIENTO VÍA EN PLACA	
	3.1	VÍA EN	N PLACA CON TRAVIESAS BIBLOQUE (ANCHO POLIVALENTE)	
		3.1.1	Comportamiento longitudinal	
		3.1.2	Comportamiento transversal. Fuerzas horizontales	1
		3.1.3	Cálculo de la prelosa	12
		3.1.4	Cálculo losa vía	15
	3.2	VÍA EN	N PLACA ESTUCHADA TIPO GANTREX O SIMILAR (ANCHO MIXTO)	27
		3.2.1	Comportamiento longitudinal	28
		3.2.2	Comportamiento transversal. Fuerzas horizontales	29
		3.2.3	Cálculo de la prelosa	30
		3.2.4	Cálculo losa vía	30
4	DES	VIO EN	VÍA EN PLACA ACCESO AL PUERTO	39
	4.1	СОМР	PORTAMIENTO LONGITUDINAL	4
	4.2	FUERZ	AS HORIZONTALES.	42
	4.3	MODE	LO DE CÁLCULO	44
	4.4	DEFOR	RMACIONES:	48
	4.5	ARMA	DO	48
	4.6	VERIFI	CACIONES A FATIGA	50

		4.6.1	Hormigón	50
		4.6.2	Armadura pasiva	51
	4.7	CAPAS	DE APOYO	53
5	DES	VIO EN V	VÍA EN PLACA ZONA INTERIOR DEL PUERTO	53
	5.1	СОМР	ORTAMIENTO LONGITUDINAL	54
	5.2	СОМР	ORTAMIENTO TRANSVERSAL. FUERZAS HORIZONTALES	54
	5.3	CÁLCU	JLO LOSA VÍA	55
		5.3.1	Modelo de cálculo	56
		5.3.2	Verificación de tensiones (ELS)	59
		5.3.3	Deformaciones	60
		5.3.4	Armado de la losa de vía en placa	61
		5.3.5	Verificación a fatiga	62
		5.3.6	Capas de apoyo	64
6	CON	ICLUSIO	ONES	65
	6.1	VÍA EN	PLACA CON TRAVIESA EMBEBIDA.	65
	6.2	VÍA EN	PLACA ESTUCHADA.	65
	6.3	DESVÍC	OS PARA VÍA EN PLACA ACCESO AL PUERTO	66
	6.4	DESVÍC	OS PARA VÍA EN PLACA ZONA INTERIOR DEL PLIERTO	66

1 INTRODUCCIÓN Y OBJETO.

En el siguiente apartado se desarrollará el cálculo de las tipologías de vía en placa necesarias en el proyecto del Puerto de A Coruña., estando previsto que se requieran las siguientes:

- Vía general:
 - Traviesas bibloque (ancho polivalente).
 La sección de vía estará formada por una losa armada de 24 cm de espesor y 2,80 m de anchura sobre una prelosa de hormigón en masa y 3,40 m de anchura.
 - Vía estuchada tipo Gantrex o similar (ancho mixto).
 La sección de vía estará formada por una losa armada de 45 cm de espesor total a ccc y 2,80 m de anchura sobre una prelosa de hormigón en masa y 3,40 m de anchura.
- Aparatos de vía:
 - Aparatos sobre fijación directa TIPO P1 (ancho polivalente).

2 BASES DE CÁLCULO.

A continuación, se procederá a describir las bases empleadas para el diseño y cálculo de la vía en placa, comenzando por la normativa de aplicación a emplear.

2.1 NORMATIVA DE APLICACIÓN

Para la elaboración del Proyecto se emplearán las normas y recomendaciones enumeradas a continuación. Se distingue entre documentos relativos a las acciones a considerar y documentos referentes a la resistencia de la estructura.

2.1.1 NORMAS DE ACCIONES:

- "Instrucción sobre las acciones a considerar en puentes de ferrocarril (IAPF-07)".
 Ministerio de Fomento (Orden FOM/3671/2007 de 24 de septiembre).
- "Norma de construcción sismorresistente: Parte general y edificación. (NCSE-02)".
 Ministerio de Fomento (Real Decreto 997/2002 de 27 de septiembre).
- "Norma de construcción sismorresistente: puentes. (NCSP-07)". Ministerio de Fomento (Real Decreto 637/2007 de 18 de mayo).
- "Eurocódigo 1. Acciones en estructuras. Parte 2, Cargas de tráfico en puentes".
- Eurocódigo 8 "Proyecto de Estructuras Sismorresistentes".
- NAV 7-1-0.7 "Diseño y montaje de vía sin balasto para obra nueva".

2.1.2 NORMAS DE MATERIALES

- "Código Estructural" (Real Decreto 470/2021 de 29 de junio). Disposición 13681 del BOE num. 190 de 2021. Código que reemplaza la EHE-08y EAE (entre otras normativas).
- Eurocódigo 2 "Proyecto de Estructuras de Hormigón".
- Eurocódigo 3: "Proyecto de Estructuras de Acero".
- EN 16432 Norma Europea de vía en placa
- NAV 7-1-0.7 "Diseño y montaje de vía sin balasto para obra nueva".

2.1.3 OTRAS NORMATIVAS Y RECOMENDACIONES DE APLICACION:

- NAG. Norma ADIF General.
- NAP "Normas de ADIF de Plataforma".

2.2 CAPAS DE APOYO

La información geotécnica proporcionada para el apoyo, obtenida de la información de la campaña geotécnica, en el caso más conservador se tendría un comportamiento del conjunto de apoyo según se refleja en la siguiente tabla:

CÁLCULO DE ASIENTOS. MÉTODO DE STEINBRENNER ASIENTOS VÍA EN PLACA

Acortamiento del Estrato i-ésimo : i = Si(zi) - Si+1(zi+1)

Ancho (m)	2,80
Largo (m)	7,30
Carga Aplicada (t/m²)	5,7
$K_{(BxL)}$ (MN/m ³)	5,3

Siendo este el valor del coeficiente de balasto empleado para el apoyo de la vía en placa (losa y prelosa).

Este comportamiento es el resultado o respuesta de la siguiente estratigrafía:

Estratigrafía de Cálculo

En el caso de Estrato Indeformable, poner en el módulo de deformación i

Profundidad (m)		Módulo de		Acortamiento del	Acortamiento del
Desde	Hasta	Descripción del Terreno	Deformación (t/m²)	Coeficiente de Poisson	Estrato (esquina)(cm)	Estrato (centro) (cm)
0,30	1,00	Pedraplén	12000	0,30	5,2584E-05	0,000231645
1,00	10,00	Rellenos	1800	0,30	0,003593635	0,008513406
10,00	30,00	Rellenos compactados	1800	0,30	0,001715808	0,002010348
30,00	100,00	Terreno natural	i	0,30	0	0
			i		0	0
			i		0	0
			i		0	0
			i		0	0
			i		0	0
	•	•	Asiento elásti	co (cm)	0,5	1,1
			Asientos Cim	entación Rígida	0,4	0,9

2.3 MATERIALES

2.3.1 HORMIGÓN Y ACERO

Los materiales empleados en la vía en placa dimensionada serán los siguiente:

Losa de vía en placa.

- Hormigón armado HA-30/F/20/XS3.
- Acero B-500 SD en armaduras pasivas.

Prelosa:

• Hormigón en masa HM-20/B/20/XC2.

En caso de requerirse hormigón de limpieza se empleará el HL-150/F/20.

En el proyecto se considera una vida útil de las estructuras de 100 años.

2.3.2 NIVELES DE CONTROL ESTABLECIDOS

En el proyecto se adoptarán los siguientes niveles de control según la definición en el Código Estructural:

Acero de armar:

Todos los casos: Normal

Hormigón:

Todos los casos: Estadístico

Ejecución:

Todos los casos: Intenso

Corresponde a la Dirección de Obra la responsabilidad de la realización de los controles anteriormente definidos.

2.3.3 COEFICIENTES PARCIALES DE SEGURIDAD PARA LA RESISTENCIA

Los controles anteriormente definidos estarán en consonancia con los coeficientes parciales de seguridad empleados para los materiales en los cálculos justificativos de la seguridad estructural.

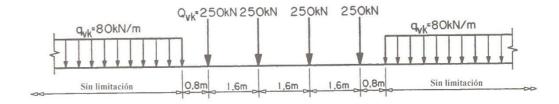
Según Tabla A19.2.1 del Código Estructural.

Tabla A19. 2.1 Coeficientes parciales de seguridad para los materiales para Estados Límite Últimos.

Situación de cálculo	γ_C hormigón	γ_{S} armaduras pasivas	$\gamma_{\mathcal{S}}$ armaduras activas
Permanente o Transitoria	1,5	1,15	1,15
Accidental	1,3	1,0	1,0

⁽²⁾ Para la comprobación en Estado Límite de Servicio los valores de los coeficientes parciales de seguridad de los materiales, serán los indicados en los apartados correspondientes de los Anejos 19 a 21

2.4 PROGRAMAS DE CÁLCULO


Los programas empleados en el dimensionamiento de la vía en placa han sido:

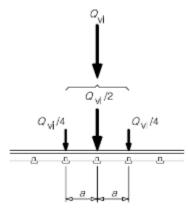
- SAP2000. Programa de elementos finitos de cálculo de estructuras desarrollado por Computers and Structures, Inc. (CSI). Cálculo matricial de estructuras en tres dimensiones formadas por elementos finitos tipo barra, así como de otro tipo de elementos finitos bidimensionales y tridimensionales. A efectos de obtención de solicitaciones y desplazamientos, para todos los estados de carga se realiza un cálculo estático y se supone un comportamiento lineal de los materiales, por tanto, un cálculo en primer orden.
- FAGUS (CUBUS AG): Programa que realiza el análisis y dimensionamiento de secciones de hormigón armado y pretensado bajo todo tipo de solicitaciones. Permite los siguientes cálculos de secciones: características mecánicas, diagramas de interacción M/N, determinación de la capacidad resistente última de la sección, comprobación de tensiones en secciones fisuradas, determinación de las fuerzas internas por un plano de deformación dado y dimensionamiento de la armadura pasiva.
- Hojas de cálculo propias para comprobaciones particulares.

2.5 ACCIONES

Las acciones generales a considerar en el cálculo de la vía en placa serán las descrita a continuación, en el posterior desarrollo del dimensionamiento se presentarán las particularizaciones de cada tipología.

- 1. Peso propio de la losa de la vía en placa, que las calcula internamente el programa, teniendo en cuenta:
 - a. Peso específico del hormigón armado 25 kN/m³.
 - b. Peso específico del hormigón armado 24 kN/m³.
- 2. Cargas muertas, se trata de todas las cargas que no contribuyen estructuralmente, como es el caso de las traviesas, carriles y sujeciones, el valor dependerá de la tipología de vía.
- **3. Tren de cargas UIC-71**, definido en el Eurocódigo 1 e I.A.P.F.-07, y que se compone de:
- a) Cuatro ejes de 250 kN cada uno dispuestos en el eje de la vía, separados longitudinalmente entre sí 1,60 m, situados en la posición más desfavorable.
- b) Una sobrecarga uniformemente repartida de 80 KN/m, extendida en la longitud y posición que sea más desfavorable.

A las cargas ferroviarias descritas se les aplicarán unos coeficientes exigidos por la normativa en vigor (I.A.P.F.-07/Eurocódigo), que serán:


- Coeficiente de clasificación α con valor 1,21 (aplicadas al combinar en el modelo).
- Coeficiente de impacto Φ . Se han seguidos los criterios marcados por la normativa en vigor (IAPF-07/Eurocódigo 1). Este valor se calculará para cada una de las tipologías de vía en placa.

La distribución transversal de carga bajo traviesa será con un ángulo de 45° (1/1).

Distribución de cargas por traviesas (traviesas bajo eje):

- Q/2 la central 125 kN.
- Q/4 las laterales 62,5 kN.
- **4. Carga de mantenimiento**: Tendrá un valor de 5,0 kN/m² y no actuará simultáneamente con el tráfico ferroviario. En consecuencia, no será una carga que condicione el dimensionamiento de la placa.
- **5. Gradiente térmico**, el cálculo se realiza siguiendo la normativa en vigor, que para una losa maciza de hormigón se aplicará la siguiente expresión:

$$\Delta T_{SI} = (K_1 K_2) \Delta T_{SI,ref}$$

Este valor se calculará para cada una de las tipologías de vía en placa.

6. Fuerza centrífuga

La fuerza centrífuga se supone actuando en la parte de la estructura que corresponda a la zona de vía en curva, en dirección horizontal y perpendicularmente al eje de la vía, a una altura de 1,80 m sobre el plano medio de rodadura.

El valor característico de la fuerza centrífuga correspondiente a las cargas puntuales y uniformemente repartidas se obtendrá mediante la aplicación de las siguientes expresiones:

$$Q_{tk} = \alpha \cdot \frac{Q_{v,k} \cdot v^2}{q \cdot r} \cdot f$$

$$q_{tk} = \alpha \cdot \frac{q_{v,k} \cdot v^2}{g \cdot r} \cdot f$$

donde:

- Q_{v,k} Valores de las cargas verticales puntuales del tren de cargas tipo,
 no afectadas de ningún coeficiente de impacto
- q_{v,k} Valores de las cargas verticales repartidas del tren de cargas tipo,
 no afectadas de ningún coeficiente de impacto
- v Velocidad del tren (m/s)
- α Coeficiente de clasificación definido en el apartado anterior. Para v
 > 120 km/h no se tomarán valores de α superiores a la unidad (α ≤ 1)
- g Aceleración de la gravedad (9,81 m/s²)
- r Radio de la curva en planta (m)
- f Coeficiente reductor definido por la siguiente expresión:

$$f = 1$$
 para $V \le 120 \text{ km/h}$

$$f = \left[1 - \frac{v - 120}{1000} \cdot \left(\frac{814}{v} + 1,75\right) \cdot \left(1 - \sqrt{\frac{2,88}{L_f}}\right)\right] \qquad \text{para } 120 < v \le 300 \text{ km/h}$$

$$f = 0,197 + 0,803 \cdot \sqrt{\frac{2,88}{L_f}} \qquad \text{para } V > 300 \text{ km/h}$$

Debiendo tomarse en todo caso un valor $f \ge 0.35$ y siendo:

- v Velocidad del tren (km/h)
- L_f Longitud (m) de la zona de vía cargada que produzca el efecto más desfavorable sobre el elemento en estudio. En el caso de líneas de influencia con cambios de signo o con discontinuidades, L_f será la longitud del tramo de línea de influencia del mismo signo que produce el efecto más desfavorable sobre el elemento en estudio. Si L_f > 150 m, se tomará L_f = 150 m para el cálculo del coeficiente f. Si L_f ≤ 2,88 m, se tomará f = 1.

7. Fuerza de lazo

La fuerza de lazo se considera como una fuerza concentrada actuando horizontalmente, en la parte superior de los carriles y perpendicular al eje de la vía. El valor característico de la fuerza de lazo se toma de α x100 kN, de acuerdo con lo señalado en la IAPF y Eurocódigo.

8. Arranque y frenado

Las fuerzas de frenado y arranque actúan en la parte superior de los carriles en dirección longitudinal. Se consideran como uniformemente distribuidas en la longitud de influencia L del efecto de la acción en el elemento estructural considerado. Sus valores característicos son los siguientes:

Fuerza de arranque:

$$Q_{1k} = \alpha \cdot 33 \cdot L(m) \text{ con } L \leq 30 \text{ m}$$

Fuerza de frenado:

$$Q_{1k} = \alpha \cdot 20 \cdot L(m) \text{ con } L \leq 300 \text{ m}$$

2.6 VALORES REPRESENTATIVOS DE LAS ACCIONES

Las acciones se definen, en su magnitud, por sus valores representativos.

Una misma acción puede tener un único o varios valores representativos, según se indica a continuación, en función del tipo de acción.

2.6.1 ACCIONES PERMANENTES (G)

Para las acciones permanentes se considerará un único valor representativo, coincidente con el valor característico G_k .

2.6.2 ACCIONES PERMANENTES DE VALOR NO CONSTANTE (G*)

Acciones del terreno: para el peso del terreno, que gravita sobre elementos de la estructura, se considerará un único valor representativo, coincidente con el valor característico. Para el empuje del terreno, se considerará el valor representativo de acuerdo con lo expuesto en apartados anteriores.

2.6.3 ACCIONES VARIABLES (Q)

Cada una de las acciones variables puede considerarse con los siguientes valores representativos:

- Valor característico Q_k: valor de la acción cuando actúa aisladamente.
- Valor de combinación ψ_0 Q $_k$: valor de la acción cuando actúa en compañía de alguna otra acción variable.
- Valor frecuente ψ_1 Q_k : valor de la acción que es sobrepasado durante un período de corta duración respecto a la vida útil de la estructura.
- Valor casi-permanente ψ_2 Q_k: valor de la acción que es sobrepasado durante una gran parte de la vida útil de la estructura.

Los valores de los coeficientes y son los siguientes:

ACCIONES	Ψ_{0}	Ψ_1	Ψ ₂
Cargas de tráfico	0,8	(1)	0
Resto de acciones variables	0,6	0,5	0,2

Adopta los siguientes valores: 0,80 con una via cargada. 0,60 con dos vias cargadas simultáneamente.

0.40 con tres o mas vias cargadas simultáneamente

2.6.4 ACCIONES ACCIDENTALES (A)

Para las acciones accidentales se considerará un único valor representativo, coincidente con el valor característico A_k.

2.7 VALORES DE CÁLCULO DE LAS ACCIONES

Los valores de cálculo de las diferentes acciones son los obtenidos aplicando el correspondiente coeficiente parcial de seguridad γ a los valores representativos de las acciones, definidos en el apartado anterior.

2.7.1 ESTADOS LÍMITE ÚLTIMO (E.L.U.)

Para los coeficientes parciales de seguridad γ se tomarán los siguientes valores básicos:

Tabla 4.1 Coeficientes parciales de seguridad (γ) para las acciones

Tipo de verificación ⁽¹⁾	Tipo de acción	Situación persiste	Situación persistente o transitoria		
		desfavorable	favorable		
	Permanente Peso propio, peso del terreno	1,35	0,80		
Resistencia	Empuje del terreno	1,35	0,70		
	Presión del agua	1,20	0,90		
	Variable	1,50	0		
		desestabilizadora	estabilizadora		
P-4-billion d	Permanente Peso propio, peso del terreno	1,10	0,90		
Estabilidad	Empuje del terreno	1,35	0,80		
	Presión del agua	1,05	0,95		
	Variable	1,50	0		

2.7.2 ESTADOS LÍMITE DE SERVICIO (E.L.S.)

Para los coeficientes parciales de seguridad γ se tomarán los siguientes valores:

Canaanta	Situaciones persistentes y transitorias		
Concepto	Efecto favorable	Efecto desfavorable	
Acciones perma	γ _G = 1,0	γ _G = 1,00	
Acciones permanentes	Reológicas	γ _{G*} = 1,0	γ _{G*} = 1,0
de valor no constante	Acciones del terreno	γ _{G*} = 1,0	γ _{G*} = 1,0
Acciones vario	$\gamma_Q = 0$	γ _Q = 1,0	

2.8 COMBINACIÓN DE ACCIONES

Las hipótesis de carga a considerar se formarán combinando los valores de cálculo de las acciones cuya actuación pueda ser simultánea, según los criterios generales que se indican a continuación.

2.8.1 ESTADOS LÍMITE ÚLTIMO (E.L.U.)

Situaciones persistentes y transitorias

Las combinaciones de las distintas acciones consideradas en estas situaciones, se realizará de acuerdo con el siguiente criterio:

$$\sum_{j\,\geqslant\,1}\,\gamma_{G,j}G_{k,j} + \sum_{j\,\geqslant\,1}\,\gamma_{G^*,j}G_{k,j}^{\star} +\,\gamma_P P_k +\,\gamma_{Q,1}Q_{k,1} + \sum_{i\,>\,1}\,\gamma_{Q,i}\Psi_{0,i}Q_{k,i}$$

donde:

- G_{kj} valor representativo de cada acción permanente de valor constante.
- G*_{ki} valor representativo de cada acción permanente de valor no constante.
- Q_{k,1} valor representativo (valor característico) de la acción variable dominante.
- ψ_{0,i} Q_{k,i}valores representativos (valores de combinación) de las acciones variables concomitantes con la acción variable dominante.

Situaciones accidentales

Las combinaciones de las distintas acciones consideradas en estas situaciones se realizarán de acuerdo con el siguiente criterio:

$$\sum_{i \geq 1} G_{k,j} + \sum_{i \geq 1} \gamma_{G^{\star},i} \ G^{\star}_{k,i} + \gamma_{Q,1} \ \psi_{1,1} \ Q_{k,1} + \sum_{i > 1} \gamma_{Q,i} \ \psi_{2,i} \ Q_{k,i} + A_k$$

donde:

- G_{k,j} valor representativo de cada acción permanente de valor constante.
- G*_{ki} valor representativo de cada acción permanente de valor no constante.
- $\psi_{1,1} Q_{k,1}$ valor representativo (valor frecuente) de la acción variable dominante.
- $\psi_{2,1}$ $Q_{k,j}$ valores representativos (valores casi-permanentes) de las acciones variables concomitantes con la acción variable dominante y la acción accidental.
- A_k valor representativo (valor característico) de la acción accidental.

2.8.2 ESTADOS LÍMITE DE SERVICIO (E.L.S.)

Para estos estados se consideran únicamente las situaciones persistentes y transitorias, excluyéndose las accidentales.

Las combinaciones de las distintas acciones consideradas en estas situaciones, se realizará de acuerdo con el siguiente criterio:

Combinación característica (poco probable o rara):

$$\sum_{j \geq 1} G_{k,j} + \sum_{i \geq 1} \gamma_{G^*,i} \ G^*_{k,i} + \gamma_{Q,1} \ Q_{k,1} + \sum_{i > 1} \gamma_{Q,i} \ \psi_{0,i} \ Q_{k,i}$$

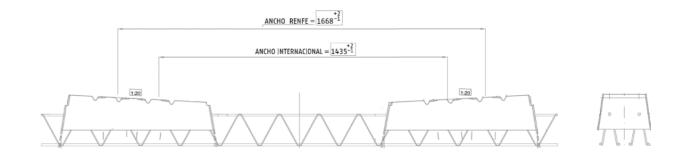
Combinación frecuente:

$$\sum_{j \geq 1} G_{k,j} + \sum_{i \geq 1} \gamma_{G^*,i} \ G^*_{k,i} + \gamma_{Q,1} \ \psi_{1,1} \ Q_{k,1} + \sum_{j > 1} \gamma_{Q,i} \ \psi_{2,i} \ Q_{k,i}$$

• Combinación casi-permanente:

$$\sum_{i>1} G_{k,j} + \sum_{i>1} \gamma_{G^*,i} G^*_{k,i} + \sum_{i>1} \gamma_{Q,i} \psi_{2,i} Q_{k,i}$$

3 VÍA GENERAL. DIMENSIONAMIENTO VÍA EN PLACA.


A continuación, se desarrollará el cálculo de las tipologías de vía en placa empleada en la vía general.

3.1 VÍA EN PLACA CON TRAVIESAS BIBLOQUE (ANCHO POLIVALENTE)

Se trata de una tipología en la cual se embebe en hormigón armado una traviesa con dos bloques unidos por una celosía, la sección o paquete de vía estará formado por dos capas que serán:

- Losa de vía con una anchura de 2,80 m y 24 cm de espesor, en la cual irá embebida la traviesa.
- Prelosa de 30 cm y 3,40 m de hormigón en masa cuya finalidad será la de proteger la plataforma y consequir un apoyo adecuado para la losa de la vía.

La traviesa bibloque monolíticamente integradas en la losa de hormigón armado será la mostrada a continuación (de acuerdo con la norma UNE-EN 16432-2. 2018. Aplicaciones ferroviarias. Sistemas de vía sin balasto. Parte 2: Diseño del sistema, subsistemas y componentes).

Las características generales del sistema de traviesas bibloque serán:

- Carril 54E1 (inclinación 1/20).
- Ancho de vía sobre elemento montado:
 - traviesa polivalente: 1.435 mm ó 1.668 mm.
- Distancia entre traviesas 0,65 m.
- Sistema de sujeción con una rigidez dinámica a baja frecuencia dentro del rango 30-50 kN/mm, medida según UNE-EN 13146-9, a 10 Hz y temperatura ambiente (unos 33 kN/mm en estático)

Las características del trazado en el que se encajará la vía en placa serán las siguientes:

- $V_{max} = 30 \text{ km/h}$.
- $R_{min} = 200 \text{ m}.$

La localización de la tipología dentro del trazado será:

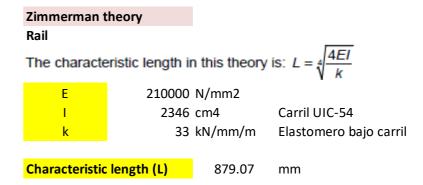
- VÍA RAMAL DE ACCESO.
- VÍA MANGO DE SEGURIDAD.
- VÍA MANGO DE MANIOBRAS.

A continuación se desarrollará el cálculo y comprobación de los elementos que componen la capa de vía en placa, comenzando por el comportamiento y respuesta de los diferentes elementos.

3.1.1 COMPORTAMIENTO LONGITUDINAL.

En primer lugar, se evaluará el comportamiento longitudinal respecto a las **cargas verticales** lo que incluye:

- Reparto de cargas en función de la rigidez vertical de la vía.
- Determinación del coeficiente de impacto (según normativa alemana)

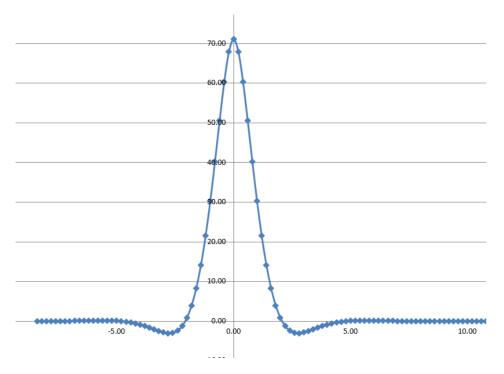

Reparto de cargas en función de la rigidez vertical de la vía.

Los valores de rigidez habituales para el tipo de vía bloque polivalente son:

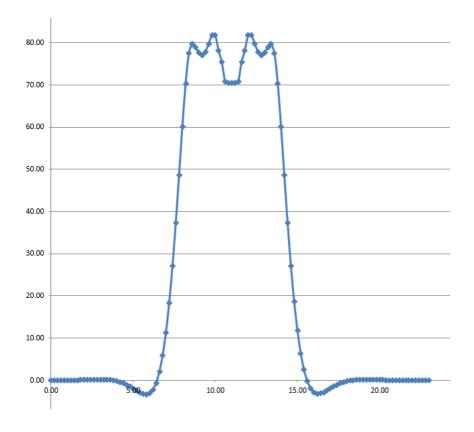
- Rigidez estática: 33 kN/mm/m.
- Rigidez dinámica: 50 kN/mm/m.

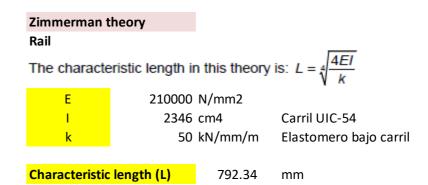
Para determinar el reparto longitudinal de cargas se aplicará la teoría de Zimmerman.

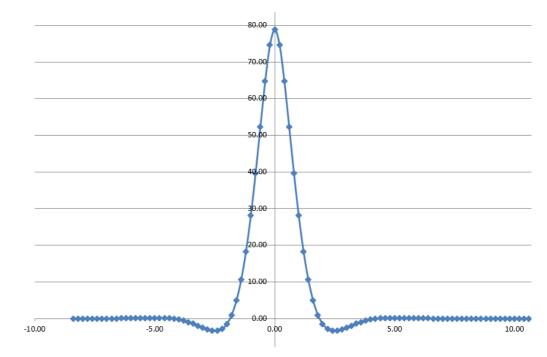
En el caso de rigidez estática:


La distribución de las fuerzas seguirá el siguiente polinomio:

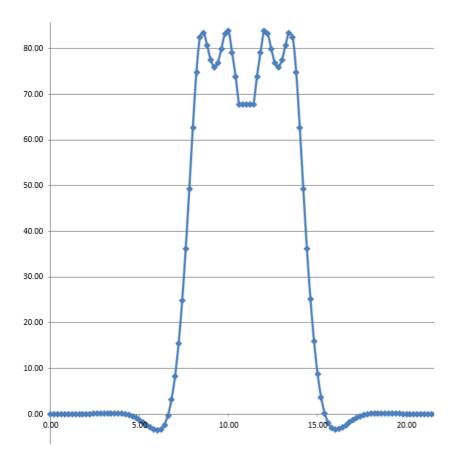
$$p(x) = \frac{Q}{2L}\eta(x) \text{ with } \eta(x) = e^{-\frac{|x|}{L}} \left[\cos \frac{x}{L} + \sin \frac{|x|}{L} \right].$$


El comportamiento de un eje será el representado en la siguiente gráfica.

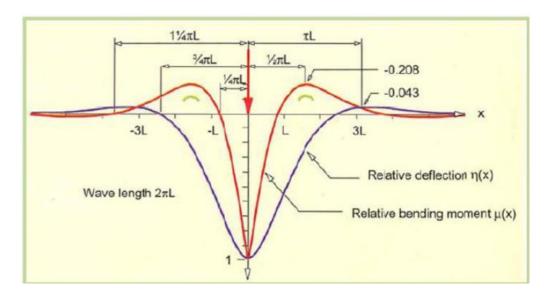



El comportamiento de los ejes del tren de la normativa (UIC-71) se representa a continuación.

En el caso de rigidez dinámica:


La respuesta de un eje se representa en la siguiente gráfica.

El conjunto de ejes del tren de cargas viene representado a continuación.



Se observa claramente que el reparto final de cargas que se podrá adoptar depende de la rigidez del sistema, siendo posible realizarlo en una longitud mayor que la prescrita en la normativa.

Coeficiente de impacto.

El esquema de comportamiento bajo la carga de un eje, y la relación con la longitud característica es la mostrada a continuación:

Considerando valores del lado de la seguridad se obtiene el siguiente valor del coeficiente de impacto:

ф								
К	55,00 MN/mm2							
E	15000 N/mm2							
I	0,0032	3 m4						
Characteristic le	ngth (L)	136,961899 cm						
Lm	1,37	m						
Lф	6,45	m						
ф	1,44							
α	1,21							

No se debe olvidar que según el Eurocódigo el coeficiente de impacto tendría el valor de 1,0, pero para dejar los cálculos del lado de la seguridad y siguiendo el proceso de cálculo de la DB se empleará el valor obtenido anteriormente (1,44).

3.1.2 COMPORTAMIENTO TRANSVERSAL. FUERZAS HORIZONTALES.

Estas acciones se transmitirán a la losa por las sujeciones y esta debe ser capaz de transmitirlas por contacto a la capa inferior.

Las acciones que darán lugar a fuerzas horizontales serán:

- Frenado y arranque.
- Fuerza centrífuga.
- Lazo.

El valor de cada una de las acciones viene fijado por la normativa en vigor siendo:

- Frenado y arranque.
 - 24,2 kN/m. Frenado 39,93 kN/m. Arranque
- Fuerza centrífuga.

Depende de la geometría y velocidad en el tramo más desfavorable que son:

200 m. Radio mínimo 30 km/h. Velocidad

$$Q_{tk} = \alpha \cdot \frac{Q_{v,k} \cdot v^2}{g \cdot r} \cdot f$$
$$Q_{tk} = \alpha \cdot \frac{q_{v,k} \cdot v^2}{g \cdot r} \cdot f$$

$$q_{tk} = \alpha \cdot \frac{q_{v,k} \cdot v^2}{g \cdot r} \cdot f$$

v (km/h)	30	Velocidad del ferrocarril
α	1.21	Coeficiente de clasificación a emplear
g (m/s)	9.81	Aceleración de la gravedad
r (m)	200	radio de la curva en planta
f	1.000	coeficiente reductor
$L_f(m)$	2.68	Longitud de vía cargada que produce el efecto más desfavorble

Q _{eje} (KN)	125
a _{distribuida} (KN/m)	80
Q _{tk} (KN)	14.35
q _{tk} (KN/m)	9.18

Valores por carril

 Q_{tk} (KN) 7.17 4.59 q_{tk} (KN/m)

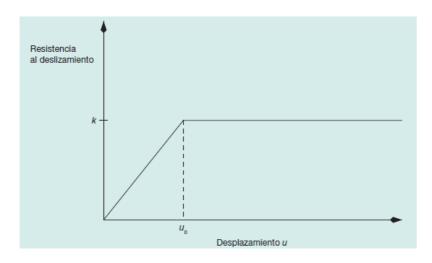
121 kN. Lazo

Evaluando la fuerza horizontal debido a la fuerza centrífuga con un rozamiento mínimo entre capas de hormigón se tendría:

Rozamiento en contacto

Peso propio	16.80	kN/m		
Carga vertical	125	kN		
Longitud	0.65	m		
μ	0.6	5		
μN	81.55 kN			
F _{c máxima}	7.17	7		
$\gamma_{seguridad}$	11.37	No Desliza		

Las acciones transversales combinadas según normativa, y a soportar por cada banda 0,65 m.


> Frenado y Arranque + Lazo OK = 52.96343 < 81.55 Fuerza Centrífuga + Lazo = 28.61018 < 81.55 OK Frenado y Arraque + Lazo + 50%Centrífuga = 53.76406 < 81.55 OK Centrífuga + 50%Frenado y Arranque + Lazo = 41.58743 < 81.55 OK

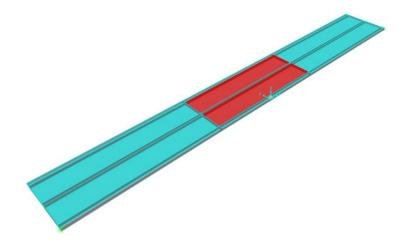
Se garantiza que no existirá problemas de deslizamiento entre losa y prelosa.

Independientemente de lo anterior analizando la ley de comportamiento de la vía en placa la fuerza horizontal que le llegaría a cada metro de losa está limitada por las sujeciones:

 $u_0 = 0.5 \text{ mm}.$

k = 40 kN/m, para vía descargada.

k = 60 kN/m, para vía cargada (sólo en la zona cargada).


Cumple con los resultados obtenidos anteriormente.

3.1.3 CÁLCULO DE LA PRELOSA.

En primer lugar se verificará si la prelosa se puede ejecutar con hormigón armado y si este trabaja adecuadamente.

Se verificará la prelosa mediante un modelo en placa apoyado sobre un terreno winkler tomando como valor proporcionado como apoyo $K_v = 5.300 \text{ kN/m}^3$.

Se ha realizado un modelo de 25 m de longitud y 3,40 m de anchura:

Modelo 3d.

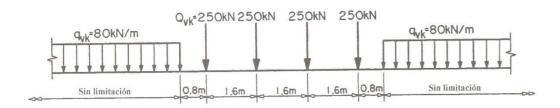
Modelo 2d

Nudos:

Áreas:

Secciones:

La carga introducida en el modelo será la siguiente aplicando los coeficientes correspondientes:



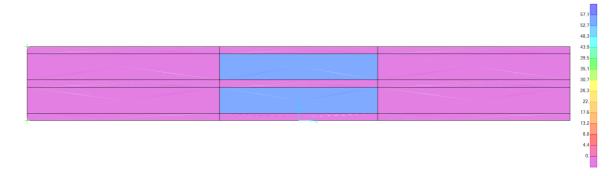
Tren de cargas UIC-71, definido en la I.A.P.F.-07, y que se compone de:

- Cuatro ejes de 250 kN cada uno dispuestos en el eje de la vía, separados longitudinalmente entre sí 1,60 m, situados en la posición más desfavorable.
- Una sobrecarga uniformemente repartida de 80 KN/m, extendida en la longitud y posición que sea más desfavorable.

Coeficiente de mayoración:

- Coeficiente de clasificación (α) 1,21.
- Coeficiente de impacto (φ) según el Eurocódigo se podría adoptar el valor de 1,0,
 aunque aplicando la normativa alemana sale 1,29 para la prelosa.

ф						
K	18.0	2 MN/mm2				
E	1500	0 N/mm2				
I	0.0076	5 m4				
Characteris	tic length (L)	224.654165 cm				
Lm	2.25	m				
Lφ	10.59	m				
ф	1.29					
α	1.21					


La carga ferroviaria no llega a solaparse transversalmente, pero si longitudinal, adoptando los siguientes valores.

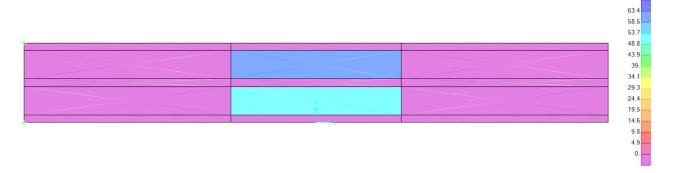
La carga aplicada sobre cada franja sería:

Carga centrada:

 $500 \text{ kN} / (7,30 \text{ x 1,20}) \text{ m2} = 57,08 \text{ kN/m}^2$.

Aplicada en el modelo:

Se le aplicará en el cálculo el coeficiente de clasificación (1,21) y el coeficiente de impacto (1,29) por lo que la carga en el cálculo alcanzará el siguiente valor:


$$57,08 \times 1,21 \times 1,29 = 89,10 \text{ kN/m}^2$$

Carga excéntrica:

$$555,5 \text{ kN} / (7,30 \text{ x } 1,20) \text{ m2} = 63,41 \text{kN/m}^2$$
.

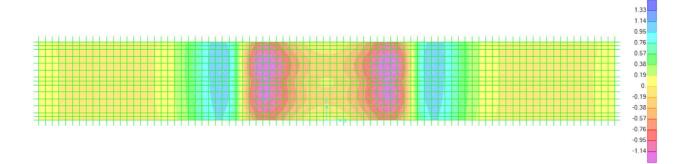
$$444,5 \text{ kN } / (7,30 \text{ x } 1,20) \text{ m2} = 50,74 \text{ kN}/\text{m}^2$$
.

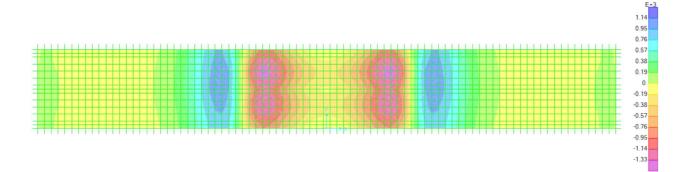
Aplicada en el modelo:

Aplicado el coeficiente de clasificación (1,21) y el coeficiente de impacto (1,29) la carga en el cálculo será:

$$63,41 \times 1,21 \times 1,29 = 98,98 \text{ kN/m}^2$$

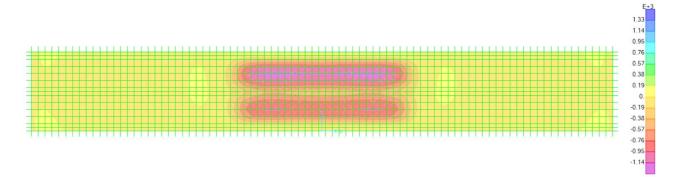
$$50,74x 1,21 \times 1,29 = 79,20 \text{ kN/m}^2$$

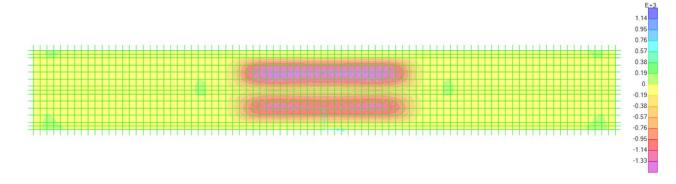



Con las cargas anteriores se verificarán las tensiones a las que se verá solicitada la losa en ELS.

Sentido longitudinal.

Máximo:


Mínimo:


 $\sigma = \pm 1.421,15 \text{ kN/m}^2$.

Sentido transversal.

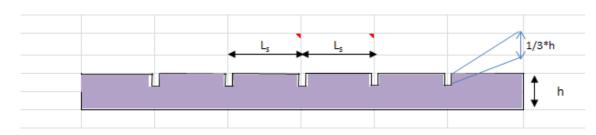
Máximo:

Mínimo:

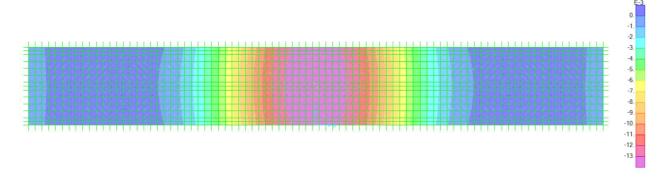
 $\sigma = \pm 1442,24 \text{ kN/m}^2$.

El hormigón en masa propuesto será un HM-20 con f_{ck} = 20 MPa por lo que las máximas tensiones a la que podrá trabajar serán:

- Tracción 1,5 MPa = 1.500 kN/m^2
- Compresión 12 MPa = 12.000 kN/m^2

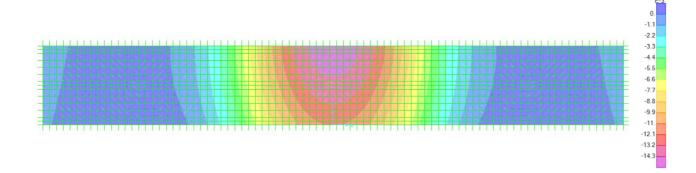

Por lo que con los valores obtenidos será viable el ejecutar una prelosa de HM-20.

Será necesario realizar un corte cada 5,0 m con una profundidad de 1/3 del espesor de la losa.



L _s (m)	δ _r (mm)	δ _{ΔT} (mm)	δ _{TOTAL} (mm)	σ _{ct} (Mpa)	σ _{ctk} (Mpa)	
5.00	1.11	0.25	1.36	0.13	0.20	

Deformada.

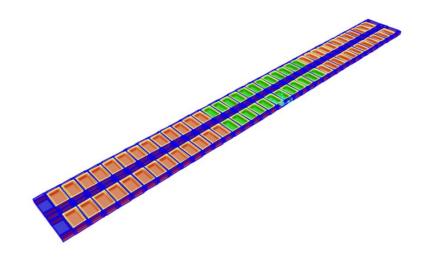

Servirá para verificar el comportamiento del apoyo y si los valores adoptados quedan del lado de la seguridad cubriendo los valores de partida.

FFCC centrado:

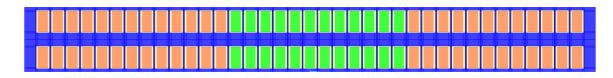
 $\delta = 1,30 \text{ cm}$

FFCC excéntrico:

 $\delta = 1,43 \text{ cm}$


En el orden de lo esperado y en consecuencia el apoyo considerado responde según lo esperado y el cálculo realizado es correcto.

3.1.4 CÁLCULO LOSA VÍA.


A continuación se desarrolla el cálculo de la losa de vía.

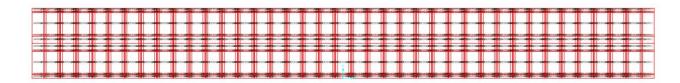
3.1.4.1 Modelo de cálculo.

Para el dimensionamiento de la vía en placa se realiza un modelo de 2,80 m de anchura, 25 m de longitud y 0,24 m - 0,17m de espesor (menor espesor bajo traviesa), apoyado sobre un lecho elástico ($K_v = 6.400 \text{ kN/m}^3$).

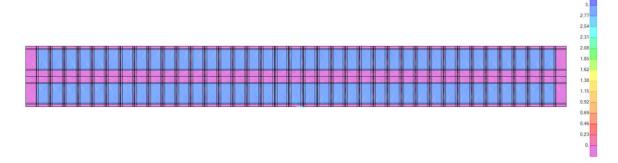
Modelo 3d.

Modelo 2d.


Nudos:

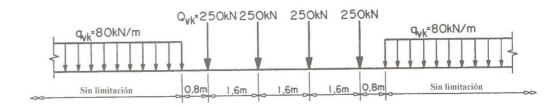


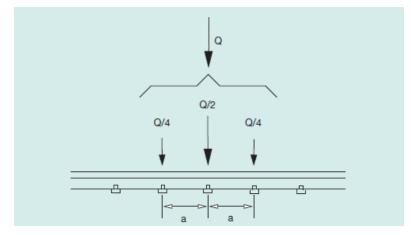
Áreas:


Secciones:

La carga distribuida sobre la losa estará en un área de 99 x 59 cm, separadas 0,65 m entre sí.

Las cargas aplicadas en el modelo han sido las siguientes:


- **Peso propio** lo calcula internamente el programa.
- Carga muerta traviesas, carriles y sujeciones.

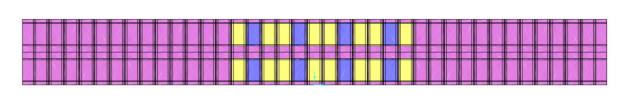

• Sobrecarga de uso.

Tren de cargas UIC-71, definido en la I.A.P.F.-07, y que se compone de:

- Cuatro ejes de 250 kN cada uno dispuestos en el eje de la vía, separados longitudinalmente entre sí 1,60 m, situados en la posición más desfavorable.
- Una sobrecarga uniformemente repartida de 80 KN/m, extendida en la longitud y posición que sea más desfavorable.

Cada una de las cargas de los ejes se reparten entre tres traviesas según se indica en la normativa en vigor:

Quedando los siguientes valores:


Máxima carga por bloque 250/4 = 62,5 kN.

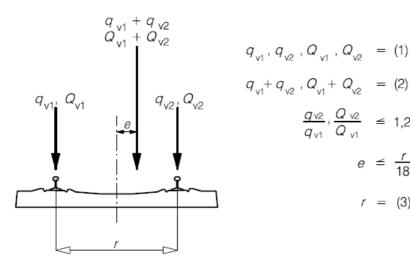
Carga distribuida 107,01 kN/m².

Mínima carga por bloque de traviesa 62,5/2 = 31,25 kN.

Carga distribuida 53,50 kN/m².

A continuación se muestra su aplicación en el modelo de cálculo:

(cargas aplicadas en t/m²)


r = (3)

A los valores anteriores se les aplica en el cálculo el coeficiente de clasificación (1,21) y el de clasificación (1,44) lo que supone un coeficiente total de 1,743. El valor de la carga en el modelo será:

Máxima carga por bloque: $107,01 \times 1,743 = 186,82 \text{ kN/m}^2$.

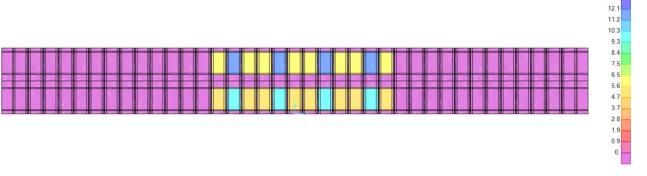
 $53,50 \times 1,743 = 93,25 \text{ kN/m}^2$. Mínima carga por bloque:

Además, será necesario evaluar la excentricidad de cargas según se marca en la IAPF-07/Eurocódigo:

Sobrecarga de uso aplicando la excentricidad quedará:

Máxima carga distribuida:

 $q_1 = 118,89 \text{ kN/m}^2$.


 $q_2 = 95,13 \text{ kN/m}^2$.

Mínima carga distribuda:

 $q_1 = 59,45, kN/m^2$.

 $q_2 = 47,57 \text{ kN/m}^2$.

Aplicada en el modelo según se muestra a continuación:

(cargas aplicadas en t/m²)

Dichos valores se incrementan en 1,743 debido a la aplicación del coeficiente de impacto y clasificación, lo que quedaría:

Máxima carga distribuda:

$$q_1 = 118,89 \times 1,743 = 207,23 \text{ kN/m}^2$$
.

$$q_2 = 95,13 \times 1,743 = 165,81 \text{ kN/m}^2$$
.

Mínima carga distribuda:

$$q_1 = 59,45, x 1,743 = 103,62 \text{ kN/m}^2.$$

$$q_2 = 47,57 \times 1,743 = 82,91 \text{ kN/m}^2$$
.

Gradiente térmico, el cálculo se realiza siguiendo la normativa en vigor, que para una losa maciza de hormigón se aplicará la siguiente expresión:

$$\Delta T_{SI} = (K_1 K_2) \Delta T_{SI, ref}$$

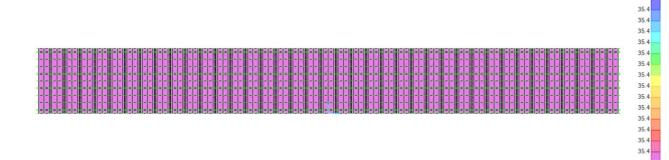
Donde:

$$K_1 = 1,32.$$

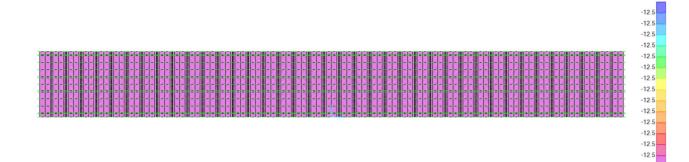
$$K_2 = 1.0.$$

$$\Delta T_{Sl,ref} = 8,50^{\circ}$$
.

Con lo que se obtiene un valor del gradiente de $\Delta T +_{SI} = 11,22$ °C y en el caso negativo se tendrá:



TABLEROS DE HORMIGÓN							
CON BALASTO SIN BALASTO							
_	-3,0 °C						


$$\Delta T_{SI} = -3.0 \, ^{\circ}C.$$

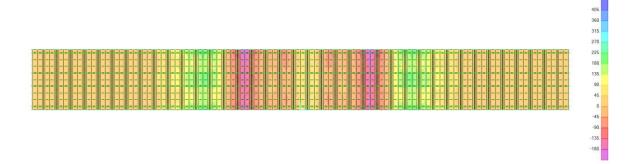
Siendo estos los valores de gradiente a aplicar en el modelo.

Gradiente positivo:

Gradiente negativo:

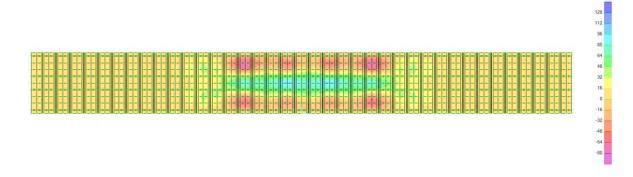
3.1.4.2 Verificación de tensiones (ELS).

Una vez que se tienen las cargas en el modelo se combinan y en primer lugar se verifican las tensiones (ELS) con la finalidad de evaluar la necesidad o no de armado.


Se debe tener en cuenta que para un hormigón de 30 MPa los limites tensionales son:

• Tracción 2,0 MPa

• Compresión 18,0 MPa.


A continuación se verifican las tensiones en servicio, teniendo en cuenta la acción de gradiente térmico que suele ser condicionante en este tipo de estructuras.

Tensión longitudinal:

 $\sigma = \pm 3.691,37 \text{ kN/m}^2$.

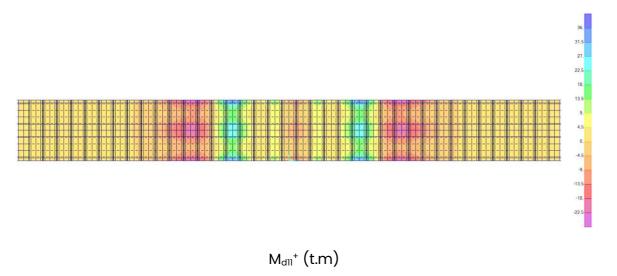
Tensión transversal:

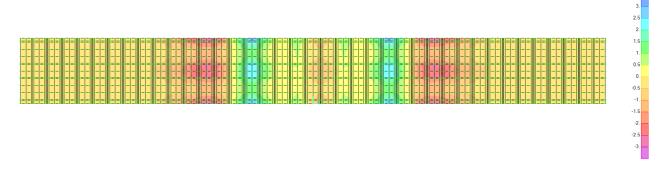
 $\sigma = \pm 1.301,15 \text{ kN/m}^2$.

Se sobrepasa la tensión admisible en sentido longitudinal por lo que se procederá a realizar el armado de la sección.

3.1.4.3 Deformaciones.

Las deformaciones esperadas al paso del ferrocarril serán:

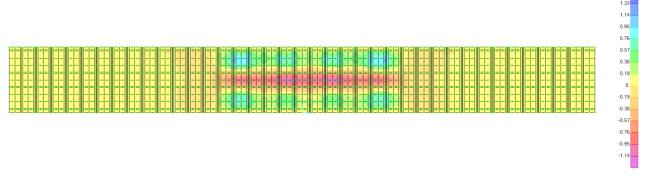



 δ = 2,09 mm.

3.1.4.4 Armado de la losa de vía en placa.

Una vez verificada la necesidad de disponer armadura en la placa en primer lugar, se determinarán los <u>esfuerzos</u> en ELU, tanto en sentido longitudinal como en transversal.

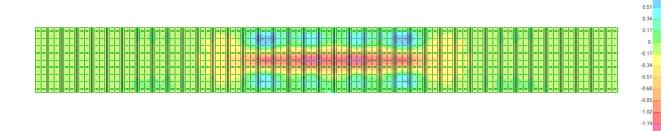
Momento longitudinal:



 $M_{d11}^{-}(t.m).$

El resumen de momentos flectores para el dimensionamiento será el mostrado a continuación:

Espesores	0,24 m	0,17 m		
M _{d11} + (kN.m)	46,20	21,30		
M _{d11} -(kN.m).	-30,03	-13,99		


Momento transversal:

 M_{d22}^{+} (t.m).

$$M_{d22}^{-}(t.m).$$

Aunque no sería estructuralmente necesario disponer armado en sentido transversal se realizará el dimensionamiento, teniendo en cuenta que se requiere disponer 1Ø20/0,65 m entre cada una de las celosías de la traviesa.

A continuación se proporcionarán los valores de esfuerzo obtenidos para el dimensionamiento.

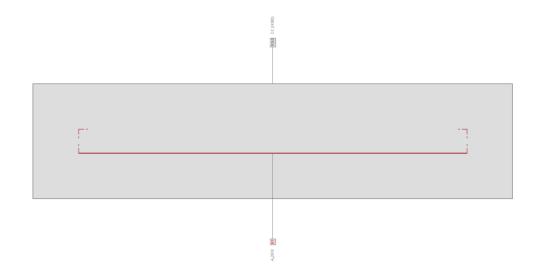
Espesores	0,24 m	0,17 m
M _{d22} + (kN.m)	12,53	8,57
M _{d22} -(kN.m).	-13,87	-2,91

Armado de la sección.

Cuantía mínima longitudinal:

La cuantía mínima necesaria para permitir su ejecución continua estará entre el 0,80 y el 0,9 % del área (fisuración controlada).

- $(0.8 \times (0.672 \,\mathrm{m}^2 \times 10000)) / 100 = 53.76 \,\mathrm{cm}^2$.
- $(0.9 \times (0.672 \,\mathrm{m}^2 \times 10000)) / 100 = 60.48 \,\mathrm{cm}^2.$


Armadura quedaría cubierta con 18 Ø 20 = 56,52 cm².

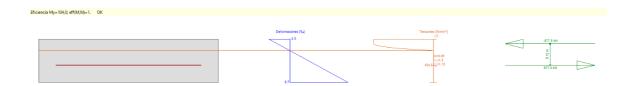
Armadura obtenida por esfuerzos:

Longitudinalmente.

Con la armadura minima anterior dispuesta entre la celosía obtendriamos un momento ultimo en sentido longitudinal de:

Sección 24 cm.

✓ Contorno de sección parcial


Nombre	Material	Clase	Tipo	No.	Уq [m]	z _q [m]	No.	Уq [m]	z _q [m]
RQS	CC	H300	Polígon	1	-0,50	0	2	0,50	0
				3	0,50	0,24	4	-0,50	0,24

✓ Características mecánicas

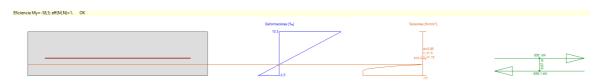
"(sin l	"(sin la contribución de la armadura, material de referencia: CC)"											
	Area	Мо	mento de inercia	Ce	entro Gr., Ángulo			Masa espec.				
	[m ²]	[m ²] [m ⁴]		[m]			[kg/m]					
Ax	0,2400	lx	0,003911	ys	-0,00			M _{sec}	600.			
Ay	(=Ax)	ly	0,001152	ZS	0,12							
Az	(=Ax)	lz	0,020000	β	0. [°]							

\triangle Armadura G0 Σ A_s = 2018 mm², ρ = 0.8 %

			•							
Nombre	Material	BC	Tipo	y1q	z _{1q}	y _{2q}	z _{2q}	as/m'	n,Ø	exist A _s
				[m]	[m]	[m]	[m]	[mm ² /m]		[mm ²]
R1	R(AEH500)	2	L	-0.41	0.10	0.41	0.10	2491		2018

Solicitaciones / Factores de eficiencia: eff(M,N)=1. OK

			F	lexión y esf	uerzo norm	al	Es	fuerzos de	corte y torsi	ón	Sección completa
No.	AP	Р	N	My	Mz	eff(M,N)	V _y	Vz	T	eff(V,T)	eff(M,N,V,T)
			[kN]	[kNm]	[kNm]	[-]	[kN]	[kN]	[kNm]	[-]	[-]
1	!ELU		0	104.0	0	1.00					


ID	D	iagr	ama	Límites	de defor	mación			Factores	de la re	sistenci	a		Otros v	alores	
	c	s		ε _{ε2}	ε _{cu3}	ε _{ud}	σ₅	αα	γε	γ_5			θ	φ		
				[%]	[%]	[%]	[N/mm ²]	[-]	[-]	[-]			[-]	[-]		
!ELU	2/0	1		-2.	-3.5	10.		0.85	1.5	1.15			45.	0.		

✓ Deformaciónes y tensiones extremas

Nombre	Clase	Уq [m]	z _q [m]	ε [‰]	σ₃ [N/mm²]	γ [-]
RQS	H300	0.5	0.24	-3.5	-17.	1.76
RQS	H300	-0.5	0.	9.7	0.	1.76
R1	AEH500	-0.41	0.1	4.5	434.8	1.15

☑ Estado Último "!ELU"

	Esfuerzos		Defo	rmación y curv	atura		Valores rigidez	
N	My	Mz	٤٤	χ,	χz	N/ε _κ	M_y/χ_y	M_z/χ_z
[kN]	[kNm]	[kNm]	[%]	[km-1]	[km-1]	[kN]	[kNm ²]	[kNm ²]
-0.1	104.	0.	3,1	54,9	0,0	20.44	1893.66	612.46

☑ Solicitaciones / Factores de eficiencia: eff(M,N)=1. OK

			F	lexión y esf	uerzo norm	al	Es	fuerzos de o	corte y torsi	ón :	Sección completa
No.	AP	P	N	My	Mz	eff(M,N)	V _y	Vz	T	eff(V,T)	eff(M,N,V,T)
			[kN]	[kNm]	[kNm]	[-]	[kN]	[kN]	[kNm]	[-]	[-]
1	!ELU		0	-58,5	0	1,00					

ID	D	iagr	ama		Límites	de defor	mación			Factores	de la re	sistenci	a	Otros valores			
	c s				ε:2	ε _{cu3}	ϵ_{ud}	σ₅	αα	γc	γ,			θ	φ		
					[‰]	[‰]	[‰]	[N/mm ²]	[-]	[-]	[-]			[-]	[-]		
!ELU	2/0	1			-2.	-3.5	10.		0.85	1.5	1.15			45.	0.		

☑ Deformaciónes y tensiones extremas

Nombre	Clase	Уq	zq	ε	σ_{i}	γ
		[m]	[m]	[%]	[N/mm ²]	[-]
RQS	H300	-0.5	0.	-3.5	-17.	1.76
RQS	H300	0.5	0.24	10.3	0.	1.76
R1	AEH500	0.41	0.1	2.	414.3	1.15

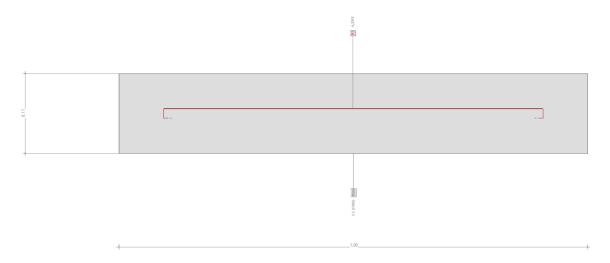
☑ Estado Último "!ELU"

	Esfuerzos		Defo	rmación y curv	atura		Valores rigidez	
N	My	Mz	ες	χ,	χz	N/ε _κ	M_y/χ_y	M_z/χ_z
[kN]	[kNm]	[kNm]	[%]	[km-1]	[km-1]	[kN]	[kNm ²]	[kNm ²]
-0.1	-58.3	0.	3,4	-57,6	0,0	17.65	1012.01	43858.52

Por lo tanto el Momento Ultimo longitudinal de la sección sería:

$$M^{+}_{ULT} = 104,00 \text{ kNm/m}.$$

$$M^{-}_{ULT} = -58,50 \text{ kNm/m}.$$


Comparados con los esfuerzos obtenidos tendremos un coeficiente de seguridad de:

$$\gamma_{SM+} = \frac{104,00}{46,20} = 2,25$$

$$\gamma_{sM-} = \frac{-58,50}{-30,03} = 1,29$$

Por tanto con la cuantían mínima requerida para ejecutar la vía continua (fisuración controlada) resulta suficiente.

Sección 17 cm

✓ Contorno de sección parcial

Nombre	Material	Clase	Tipo	No.	Уq [m]	z _q [m]	No.	Уq [m]	z _q [m]
RQS	CC	H300	Polígon	1	-0,50	0	2	0,50	0
				3	0.50	0.17	4	-0.50	0.17

✓ Características mecánicas

"(sin la contribución de la armadura, material de referencia: CC)"

_								
	Area	Mo	mento de inercia	Ce	ntro Gr., Ángulo			Masa espec.
	[m ²]		[m4]		[m]			[kg/m]
Ax	0,1700	lx	0,001462	ys	0,00		M _{sec}	425.
Ay	(=Ax)	ly	0,000409	ZS	0,08			
Az	(=Ax)	lz	0,014167	β	0. [°]			

\square Armadura G0 Σ A_s = 2018 mm², ρ = 1.2 %

Nombre	Material	ВС	Tipo	У1q [m]	^Z 1q [m]	У2q [m]	z _{2q} [m]	as/m' [mm²/m]	n,Ø	exist A _s [mm ²]
R1	R(AEH500)	2	L	-0,41	0,10	0,40	0,10	2498		2018

Solicitaciones / Factores de eficiencia: eff(M,N)=1. OK

				F	lexión y esf	uerzo norm	al	Es	fuerzos de	corte y torsi	ón	Sección completa
1	Vo.	AP	Р	N	My	Mz	eff(M,N)	V _y	Vz	T	eff(V,T)	eff(M,N,V,T)
				[kN]	[kNm]	[kNm]	[-]	[kN]	[kN]	[kNm]	[-]	[-]
1		!ELU		0	37,8	0	1,00					

ID	Diagrama		Límites de deformación			Factores		de la resistencia		Otros valores						
	c	S		ε _{ε2}	ε _{cu3}	ϵ_{ud}	σ₅	α_{cc}	γ _c	γ_{5}			θ	φ		
				[‰]	[‰]	[‰]	[N/mm ²]	[-]	[-]	[-]			[-]	[-]		
!ELU	2/0	1		-2.	-3.5	10.		0.85	1.5	1.15			45.	0.		

Deformaciónes y tensiones extremas

Nombre	Clase	Уq	zq	8	σ_{d}	γ
		[m]	[m]	[%]	[N/mm ²]	[-]
RQS	H300	-0.5	0.17	-3.5	-17.	1.76
RQS	H300	0.5	0.	8.2	0.	1.76
R1	AEH500	-0.41	0.1	1.6	345.6	1.15
R1	AEH500	0.4	0.1	1.7	348.4	1.15

☑ Estado Último "!ELU"

	Esfuerzos		Defo	rmación y curv	atura	Valores rigidez			
N	M _y	Mz	ετ	χ,	χz	N/ε _ε	M_y/χ_y	M_z/χ_z	
[kN]	[kNm]	[kNm]	[‰]	[km-1]	[km-1]	[kN]	[kNm ²]	[kNm ²]	
0.	37.7	0.	2,3	68,6	-0,0	4.63	549.56	16.52	

Solicitaciones / Factores de eficiencia: eff(M,N)=1. OK

				F	lexión y es	fuerzo no	rmal		Esfuerzos de corte y torsión				Secc	ión complet
No.	AP		Р	N	My	Mz	eff(M,I	N)	Vy	Vz	T	eff(V,T) ef	f(M,N,V,T)
				[kN]	[kNm]	[kNm]	[-]		[kN]	[kN]	[kNm]	[-]		[-]
1	!ELU			0	-58,4		0 1,	00						
	ID Diagram			Límites de deformación										
ID	0	iagr	ama	Límit	es de defor	mación			Factores	de la resi	stencia		Otros v	/alores
ID	c	iagr s	ama	Límit ε _{c2}	es de defor ε _{cu3}	mación ε _{ud}	σ₅	ας	Factore: γ _c	de la resi γ _s	stencia	θ	Otros v	/alores
ID	c	1	ama		1 1		σ _s [N/mm²]		I	I I	stencia	1 - 1		/alores

Deformaciónes y tensiones extremas

Nombre	Clase	Уq	zq	ε	σ_d	γ
		[m]	[m]	[%]	[N/mm ²]	[-]
RQS	H300	-0.5	0.	-3.5	-17.	1.76
RQS	H300	0.5	0.17	6.3	0.	1.76
R1	AEH500	-0.41	0.1	2.	412.4	1.15
R1	AEH500	0.4	0.1	2.	415.3	1.15

☑ Estado Último "!ELU"

	Esfuerzos		Defo	rmación y curv	atura	Valores rigidez			
N	M _y	Mz	ες	χ,	χz	N/ε _κ	M_y/χ_y	M_z/χ_z	
[kN]	[kNm]	[kNm]	[%]	[km-1]	[km-1]	[kN]	[kNm ²]	[kNm ²]	
0.	-58.3	0.	1,4	-57,5	-0,0	24.78	1013.23	45.05	

Por lo tanto el Momento Ultimo longitudinal de nuestra sección es:

 $M^{+}_{ULT} = 37,80 \text{ kNm/m}.$

 $M^{-}_{ULT} = -58,40 \text{ kNm/m}.$

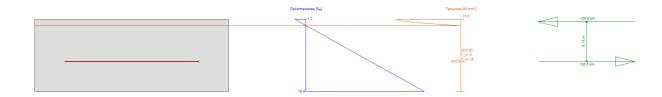
Comparados con los esfuerzos obtenidos tendremos un coeficiente de seguridad de:

$$\gamma_{sM+} = \frac{37,80}{21,30} = 1,77$$

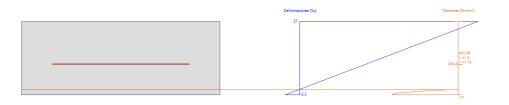
$$\gamma_{s M-} = \frac{-58,40}{-13,99} = 4,17$$

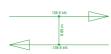
Igualmente resulta suficiente con la cuantía mínima,

En el caso de la armadura transversal se realizará la misma comprobación, aunque se ha verificado que no sería estrictamente necesario el armado al no sobrepasarse la máxima tensión de tracción.


Sección de 24 cm.

Momento último positivo de 18,10 kNm.





Los esfuerzos a los que trabajará la sección serán:

$$M_{d22}^{+}$$
 = 12,53*0,65 = 8,14 kNm < 18,10 kN.m OK

Momento último negativo de -12,70 kNm.



 $M_{d22}^- = 13,87*0,65 = 9,02 \text{ kNm} < 12,70 \text{ kN.m OK}$

Sección de 17 cm.

Momento último positivo de 12,70 kNm.

 M_{d22}^{+} = 8.57*0.65 = 5,57 kNm < 12,70 kN.m OK

Momento último negativo de -8,70 kNm.

 $M_{d22}^- = 2.91*0.65 = 1,89 \text{ kNm} < 8,70 \text{ kN.m OK}$

3.1.4.5 Temperatura y retracción.

A continuación, se verificará la armadura necesaria para garantizar a fisuración controlada (W_k).

$$A_s * \sigma_s \ge A_c * \sigma_{ct}$$

$$\sigma_{\rm s} = 250 \, \rm N/mm^2$$

$$A_c = 0.672 \text{ m}^2 \cdot 1.000.000 = 672.000 \text{ mm}^2$$
.

$$\sigma_{ct} = 2,03 \text{ N/mm}^2$$

$$A_s = 5.457 \text{ mm}^2$$
.

$$As = 54,57 \text{ cm}^2 < 56,52 \text{ cm}^2 \rightarrow OK$$

Control de fisuración.

Tabla 7.2N − Diámetro máximo de barras ø's para control de la fisuración¹

Tensión del acero²	Diámetro máximo de la barra [mm]							
[MPa]	$w_k = 0.4 \text{ mm}$	w _k = 0,3 mm	w _k = 0,2 mm					
160	40	32	25					
200	32	25	16					
240	20	16	12					
280	16	12	8					
320	12	10	6					
360	10	8	5					
400	8	6	4					
450	6	5	(2)					

Tabla 7.2 N Eurocódigo

Tabla 7.3N – Separación máxima de barras para control de la fisuración¹

Tensión del acero ²	Separación máxima de barras [mm]						
[MPa]	$w_{\rm k} = 0.4 \; {\rm mm}$	$w_{\rm k}$ = 0,3 mm	$w_k = 0.2 \text{ mm}$				
160	300	300	200				
200	300	250	150				
240	250	200	100				
280	200	150	50				
320	150	100					
360	100	50	-				

Tabla 7.3 N Eurocódigo

Por lo que con la limitación 250 MPa se garantiza la respuesta de la placa a fisuración controlada (ancho de grietas Wk ≤ 0,50 mm y distancia entre grietas < 5 m).

3.1.4.6 Verificación a fatiga (hormigón y acero).

Aunque según en apartado 6.8.1 del Eurocódigo 2 no sería necesaria realizar la verificación a fatiga al tratarse de una estructura asimilable a cimentación; a continuación, se procederá a su verificación tanto para el hormigón como del acero.

Los trenes de carga a emplear para el cálculo a fatiga serán los descritos en el apartado D.3 del Anexo D del Eurocódigo 1.

Hormigón.

Siguiendo la expresión del Eurocódigo 2 - Parte 2 (apartado 6.8 Fatiga) el valor de cálculo de la resistencia a fatiga del hormigón se obtiene de la siguiente expresión:

$$f_{\text{cd,fat}} = \text{K}_1 \beta_{\text{cc}} \left(t_0 \right) f_{\text{cd}} \left(1 - \frac{f_{\text{ck}}}{250} \right)$$

- f_{cd, fat} valor de cálculo de la resistencia a fatiga del hormigón.
- $\beta_{cc}(t_0)$ coeficiente para la resistencia del hormigón en la primera puesta en la carga.
- t_o = tiempo de inicio de la carga cíclica en hormigón en días.

$$\beta_{cc}(t) = \exp \left\{ s \left[1 - \left(\frac{28}{t} \right)^{1/2} \right] \right\}$$

• s = coeficiente que depende del tipo de cementos.

Sustituyendo se obtiene:

$$\begin{split} f_{cd,\,fat} &= 0.85 \, * \, 1.0 \, * \, 20 \, * \, (1\text{-}30/250) = 14.96 \; \text{MPa}. \\ k_1 &= 0.85. \\ t &= 28 \; \text{days}. \\ s &= 0.38. \\ \beta_{cc}(t_0) &= \exp \left(0.38 * (1\text{-}(28/28)^{\wedge}0.5) \right) = 1.0 \; (\text{no depende de s}). \\ f_{cd} &= 30/1.5 = 20 \; \text{MPa}. \\ f_{cd,\,fat} &= 14.96 \; \text{MPa}. \end{split}$$

En cálculo se han obtenido tensiones máximas de 3,69 MPa cuando la losa queda sometida a la acción de la temperatura junto al ferrocarril, por lo cual es adecuado.

Armadura pasiva.

Siguiendo la expresión del Eurocódigo 2 - Parte 1.1, apartado 6.8.4 el límite de la resistencia a fatiga viene definida por la siguiente expresión:

$$\gamma_{\mathsf{F},\mathsf{fat}} \cdot \Delta \sigma_{\mathsf{S},\mathsf{equ}} \left(N^* \right) \leq \frac{\Delta \sigma_{\mathsf{Rsk}} \left(N^* \right)}{\gamma_{\mathsf{s},\mathsf{fat}}}$$

Donde:

- γ_{F,fat} = 1.0 (valor recomendado).
- Δσ_{Rsk}(N*) rango de tension resistente obtenido a los N* ciclos, determinado mediante las curva S-N de la figura 6.30 y tabla 6.3N.

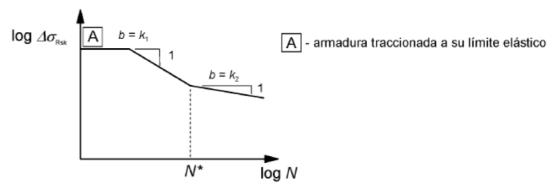


Figura 6.30 – Forma de la curva de resistencia a fatiga característica (curvas S-N para armaduras activas y pasivas)

Tabla 6.3N – Parámetros para curvas S-N de armaduras pasivas

Tipo de armadura pasiva	N*	Exponente de	la tensión k2	Δσ _{Rsk} (MPa) en N* ciclos
Barras rectas y dobladas¹	10 ⁶	5	9	162,5
Barras soldadas y mallas electrosoldadas	10 ⁷	3	5	58,5
Dispositivos de empalme	107	3	5	35
NOTA 1. Legualence name A con nove harman vector. Leguale	noe none han	dabladas as dal		

NOTA 1 Los valores para $\Delta \sigma_{Rsk}$ son para barras rectas. Los valores para barras dobladas se deberían obtener usando un facto de reducción $\zeta = 0.35 + 0.026 D/\phi$

D diámetro del mandril
 φ diámetro de la barra

• $\gamma_{S,fat}$: los coeficientes parciales de seguridad para el cálculo de fatiga ($\gamma_{C,fat}$ and $\gamma_{S,fat}$) se obtienen de la tabla 2.1N.

Tabla 2.1N – Coeficientes parciales de seguridad para materiales para estados límite últimos

Situaciones de proyecto	γc para hormigón	γs para acero de armadura pasiva	γs para acero de armadura activa
Persistente y transitoria	1,5	1,15	1,15
Accidental	1,2	1,0	1,0

• $\Delta\sigma_{sequ}(N^*)$: rango tensional de daños equivalente para diferentes tipos de armadura y teniendo en cuenta el número de ciclos N*. Δ σ _{S,equ}(N*) puede aproximarse a Δ σ _{S,max} (rango máximo de tensiones del acero bajo las combinaciones de carga relevante). Obtniendo un valor de:

$$\Delta \sigma_{Sequ} (N^*) = \Delta \sigma_{Rsk} (N^*) / (\gamma_{F,fat} * \gamma_{S,fat}) = 162.5 / (1.00 * 1.15) = 141.30 \text{ MPa}$$

A continuación se verificará la tensión de la armadura tanto en sentido longitudinal como transversal.

Armado longitudinal.

Los momentos flectores obtenido bajo las cargas de fatiga han sido:

Espesores	0,24 m	0,17 m
M _{fat,11} ⁺ (kN.m)	18,19	8,45
M _{fat,11} -(kN.m).	-11,92	-5,55

Sección de 0,24 m.

$$M_{fat,11}^+ = 18,19 \text{ kN.m/m}.$$

Hormigón

f _{ck} (Mpa)	30	M _k (kN.m)	18.19	87	.29
f _{ctk} (Mpa)	2.03				
Sección			Refue	rzo	
anchura (m	1.0		f _y (Mp	oa)	500.0
canto (m	0.24		$\Delta \sigma S_{equ} (N^*)$	(Mpa)	141.3
recubrimiento (cm	11		Diamet	ro (mm)	20
d (m)	0.230			barras	6
I (m ⁴)	0.001152		Are	a (mm²)	1884.96
y _{cdg} (m)	0.12				
	σ. (Mna)	1.89	No Crak	ing	

Momento flector

 $M_{fat,11}^- = -11,92 \text{ kN.m/m}.$

d (m)

	Hormigo	ón 💮		Momento flector			
	f _{ck} (Mpa)		30	M _k (kN.r	n)	11.92	
	f _{ctk} (Mpa)		2.03				
Sección sin	fisurar						
Sección						Refuerzo	
an	chura (m)	1.0			f _y (Mpa)		500.0
	canto (m)	0.24			$\Delta \sigma S_e$	_{qu} (N*) (Mpa)	141.3
recubrimi	ento (cm)	13			[Diametro (mm)	20
(m)		0.230				barras	6
I (m ⁴))	0.001152				Area (mm²)	1884.96

σ_{c} (Mpa)	1.24	No Craking
σ _s (Mpa)	-2.17	ОК

0.12

Sección de 0,17 m.

 $M_{fat,11}^+ = 8,45 \text{ kN.m/m}.$

Hormigón		Momento fle	ctor
f _{ck} (Mpa)	30	M _k (kN.m)	8.45
f _{ctk} (Mpa)	2.03		

Sección		Refuerzo	
anchura (m)	1.0	f _y (Mpa)	500.0
canto (m)	0.17	ΔσS _{equ} (N*) (Mpa)	141.3
recubrimiento (cm)	11	Diametro (mm)	20
d (m)	0.230	barras	6
I (m ⁴)	0.00040942	Area (mm²)	1884.96
y _{cdg} (m)	0.085		

σ _c (Mpa)	1.75	No Craking
σ _s (Mpa)	-6.50	ОК

 $M_{fat,11}^- = -5,55 \text{ kN.m/m}.$

Hormigón		Momento flector		
f _{ck} (Mpa)	30	M _k (kN.m)	5.55	
f _{ctk} (Mpa)	2.03			

-1.11

 σ_s (Mpa)

OK

Sección			Refuerzo	
anchura (m)	1.0		f _y (Mpa)	500.0
canto (m)	0.17		ΔσS _{equ} (N*) (Mpa)	141.3
recubrimiento (cm)	6		Diametro (mm	20
d (m)	0.230		barra	<mark>s</mark> 6
I (m ⁴)	0.00040942		Area (mm	²) 1884.96
y _{cdg} (m)	0.085			
	σ_{c} (Mpa) σ_{s} (Mpa)	1.15 0.47	No Craking OK	

El armado longitudinal dispuesto cumple con las limitaciones de fatiga y con margen, como era de esperar.

Armado transversal.

Los momentos flectores obtenido bajo las cargas de fatiga han sido:

Hormigón

f_{ck} (Mpa)

Espesores	0,24 m	0,17 m
M _{fat,22} + (kN.m)	4,97	3,40
M _{fat,22} - (kN.m).	-5,50	-0,87

• Sección de 0,24 m.

El cálculo se hace para un ancho de 0,65 m, que se corresponde con la separación de barras, por lo que será necesario reducir proporcionalmente el momento.

 $M_{fat,22}^+ = 3,23 \text{ kN.m.}$

f _{ctk} (Mpa)		2.03		
Sección			Refuerzo	
anchura (m)	0.7		f _y (Mpa)	500.0
canto (m)	0.24		$\Delta \sigma S_{equ}$ (N*) (Mpa)	141.3
recubrimiento (cm)	11		Diametro (mm)	20
d (m)	0.230		barras	1
I (m ⁴)	0.0007488		Area (mm²)	314.16
v (m)	0.12			

Momento flector

3.23

 $30 M_k (kN.m)$

σ_c (Mpa)	0.52	No Craking
σ _s (Mpa)	-0.30	ОК

$M_{fat,22}^- = -3,58 \text{ kN.m.}$

Hormigón		Momento fle	ctor
f _{ck} (Mpa)	30	M _k (kN.m)	3.58
f _{ctk} (Mpa)	2.03		

Sección		Refuerzo	
anchura (m)	0.7	f _y (Mpa)	500.0
canto (m)	0.24	$\Delta \sigma S_{equ}$ (N*) (Mpa)	141.3
recubrimiento (cm)	13	Diametro (mm)	20
d (m)	0.230	barras	1
I (m⁴)	0.0007488	Area (mm²)	314.16
y _{cdg} (m)	0.12		

σ_{c} (Mpa)	0.57	No Craking
σ _s (Mpa)	-1.00	ОК

Sección de 0,17 m.

 $M_{fat,22}^+ = 2,21 \text{ kN.m/m}.$

Hormigón		Momento fle	ctor
f _{ck} (Mpa)	30	M _k (kN.m)	2.21
f _{ett} (Mpa)	2.03		

Sección		Refuerzo	
anchura (m)	0.65	f _y (Mpa)	500.0
canto (m)	0.17	ΔσS _{equ} (N*) (Mpa)	141.3
recubrimiento (cm)	11	Diametro (mm)	20
d (m)	0.230	barras	1
I (m ⁴)	0.00026612	Area (mm²)	314.16
y _{cdg} (m)	0.085		

σ_c (Mpa)	0.71	No Craking
σ_s (Mpa)	-2.62	ОК

 $M_{fat,11}^- = -0.57 \text{ kN.m/m}.$

Hormigón		Momento fle	ctor
f _{ck} (Mpa)	30	M_k (kN.m)	0.57
f _{ctk} (Mpa)	2.03		

Sección			Refuerzo	
anchura	(m) 0.65		f _y (Mpa)	500.0
canto	(m) 0.17		$\Delta \sigma S_{equ}$ (N*) (Mpa)	141.3
recubrimiento (<mark>cm)</mark> 6		Diametro (mm	20
d (m)	0.230		barra	s 1
I (m ⁴)	0.00026612		Area (mm²	314.16
y _{cdg} (m)	0.085			
	σ_{c} (Mpa)	0.18	No Craking	
	σ_s (Mpa)	0.07	ОК	

El armado transversal dispuesto cumple con las limitaciones de fatiga y con margen, como era de esperar.

3.1.4.7 Capas de apoyo.

Una vez dimensionada la vía en placa se verifica que las capas del apoyo se comportan adecuadamente y no tienen problemas de fatiga durante su vida útil.

Las tensiones trasmitidas por sección de vía en placa sobre la litología será la siguiente:

La losa propuesta con la tensión transmitida sería:

Losa vía en placa				
Ancho 2.80 m				
espesor 0.24 m				
σ	67.52	kN/m ² .		

La prelosa propuesta con la tensión bajo ella:

Prelosa			
Ancho	3.40	m	
espesor	0.30	m	
σ	55.61	kN/m ² .	

Si apoya en una capa con módulo de compresibilidad mínimo de 100 MPa la tensión admisible será ≥0,11 MPa, por lo que analizando la fatiga de la capa de apoyo sería adecuado para la vida útil de diseño.

3.2 VÍA EN PLACA ESTUCHADA TIPO GANTREX O SIMILAR (ANCHO MIXTO)

Vía en placa estuchada se conforman mediante los carriles apoyados en un perfil metálico sujetos mediante clips. Todo ello embebido en una losa de hormigón o pavimento, sobre la cual quedará libre la rodadura del tráfico ferroviario.

El sistema completo de vía estará formado por dos capas:

- Losa de vía con una anchura de 2,80 m y 45 cm de espesor, en la cual irá embebido el carril.
- Prelosa de 30 cm y 3,40 m de hormigón en masa cuya finalidad será la de proteger la plataforma y conseguir un apoyo adecuado para la losa de la vía.

Las **características generales** del sistema son:

- Carril 54E1 (vertical).
- Ancho de vía sobre el elemento montado para la explotación en ancho mixto:
 - Ancho de vía 1.668 mm y ancho 1.435 mm, simultáneamente.
- Perfil metálico L 100x100x10, de 2300 mm de longitud, colocados cada 1,5 m.
- Sujeciones entre perfil metálico y el carril tipo soldable Gantrex Railock W10/BJ (o similar). Apoyo rígido del carril al perfil metálico.

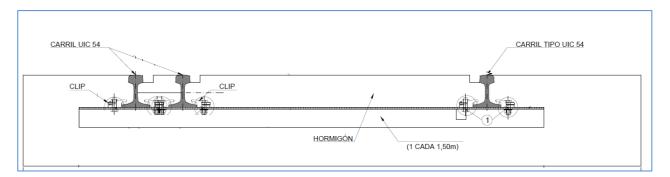


Figura 1. Sección vía estuchada

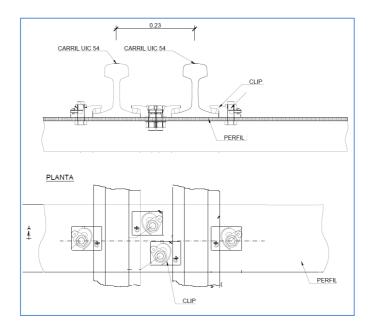
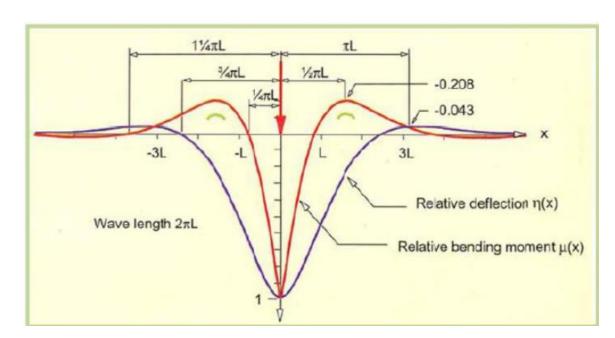


Figura 2. Detalle elemento de fijación de carril

Las características del trazado en el cual encajará la tipología estudiada son:


- $V_{max} = 30 \text{ km/h}$
- $R_{min} = 200 \text{ m}.$

3.2.1 COMPORTAMIENTO LONGITUDINAL.

En primer lugar, se evaluará el comportamiento longitudinal respecto a las **cargas verticales** lo que incluye:

• Determinación del coeficiente de impacto (según normativa alemana)

El esquema de comportamiento bajo la carga de un eje, y la relación con la longitud característica es la mostrada a continuación:

Considerando valores del lado de la seguridad se obtiene el siguiente valor del coeficiente de impacto:

ф			
К	55.00	MN/mm2	
E	15000	N/mm2	
ı	0.02126 m4		
Characterist	tic length (L)	255.364828 cm	
Lm	2.55	m	
Lφ	12.03	m	
ф	1.26		
α	1.21		

No se debe olvidar que según el eurocódigo en plataforma el coeficiente de impacto tendría el valor de 1,0, pero para dejar los cálculos del lado de la seguridad y siguiendo el proceso de cálculo se empleará el valor obtenido anteriormente (1,26).

No se ha realizado un análisis independiente del carril con su apoyo ya que se trata de una estructura muy rígida y responde directamente como la placa o losa de vía al estar embebido.

3.2.2 COMPORTAMIENTO TRANSVERSAL. FUERZAS HORIZONTALES.

Estas acciones se transmitirán a la losa por las sujeciones y esta debe ser capaz de transmitirlas por contacto a la capa inferior.

Las acciones que darán lugar a fuerzas horizontales serán:

- Frenado y arranque.
- Fuerza centrífuga.
- Lazo.

El valor de cada una de las acciones viene fijado por la normativa en vigor siendo:

- Frenado y arranque.
 - 24,2 kN/m. Frenado 39,93 kN/m. Arranque
- Fuerza centrífuga.

Depende de la geometría y velocidad en el tramo más desfavorable que son:

 Radio mínimo 200 m. 30 km/h. Velocidad

Q_{tk} (KN)

$$Q_{tk} = \alpha \cdot \frac{Q_{v,k} \cdot v^2}{g \cdot r} \cdot f$$
$$Q_{tk} = \alpha \cdot \frac{q_{v,k} \cdot v^2}{g \cdot r} \cdot f$$

$$q_{tk} = \alpha \cdot \frac{q_{v,k} \cdot v^2}{g \cdot r} \cdot t$$

Valor de la fuerza centrífuga de la carga puntual

	q _{tk} (KN/m)	Valor de la fuerza centrifuga de la carga uniforme
v (km/h)	30	Velocidad del ferrocarril
α	1.21	Coeficiente de clasificación a emplear
g (m/s)	9.81	Aceleración de la gravedad
r (m)	200	radio de la curva en planta
f	1.000	coeficiente reductor
$L_f(m)$	2.88	Longitud de vía cargada que produce el efecto más desfavorble

Q_{eie} (KN) 125 q_{distribuida} (KN/m) 80 Q_{tk} (KN) 15.42 9.87 q_{tk} (KN/m)

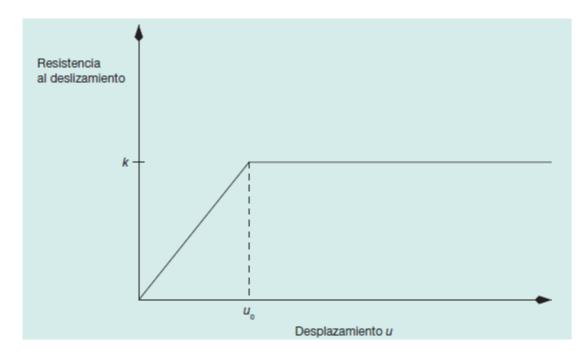
121 kN. Lazo

Evaluando la fuerza horizontal debido a la fuerza centrífuga con un rozamiento mínimo entre capas de hormigón se tendría:

Rozamiento en contacto

Peso propio	16.80	kN/m
Carga vertical	125	kN
Longitud	0.65	m
μ	0.6	
μΝ	81.55 kN	
F _{c máxima}	7.71	
$\gamma_{seguridad}$	10.5	8 No Desliza

Las acciones transversales combinadas según normativa, y a soportar por cada banda 0,65 m.


> Frenado y Arranque + Lazo = 52.96343 < 81.55 OK Fuerza Centrífuga + Lazo = 28.72968 < 81.55 OK Frenado y Arraque + Lazo + 50%Centrífuga = 53.8238 < 81.55 OK Centrífuga + 50%Frenado y Arranque + Lazo = 41.70693 < 81.55 OK

Se garantiza que no existirá problemas de deslizamiento entre losa y prelosa.

Independientemente de la anterior analizando la ley de comportamiento de la vía en placa la fuerza horizontal que le llegaría a cada metro de losa está limitada por las sujeciones:

 $u_0 = 0.5 \text{ mm}.$

k = 40 kN/m, para vía descargada.

k = 60 kN/m, para vía cargada (sólo en la zona cargada).

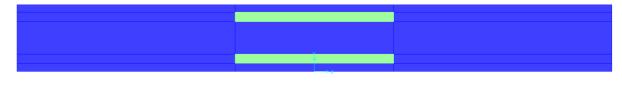
Cumple con los resultados obtenidos anteriormente.

3.2.3 CÁLCULO DE LA PRELOSA.

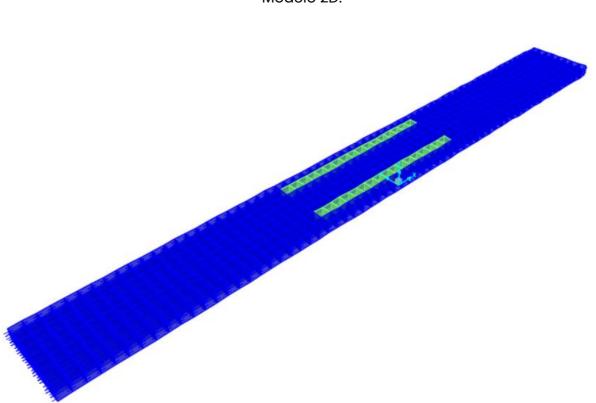
En el caso particular de la prelosa bajo la vía en placa estuchada se puede extrapolar lo calculado para la prelosa bajo vía con traviesas embebidas ya que es de las mismas dimensiones y las cargas que la llegarán muy similares.

Tendrá los mismos requerimientos de juntas a 1/3 de la sección y los asientos del mismo orden.

3.2.4 CÁLCULO LOSA VÍA.


A continuación se desarrolla el cálculo de la losa de vía.

3.2.4.1 Modelo de cálculo.

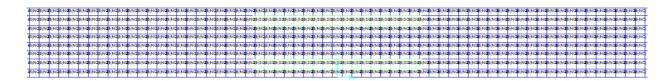

Para esta tipología el dimensionamiento de la vía en placa se realiza un modelo de 2,80 m de anchura, 25 m de longitud y 0,45 m de espesor, apoyado sobre un lecho elástico ($K_v = 6.400 \text{ kN/m}^3$).

Según se ha determinado en el cálculo longitudinal de la vía (losa) se obtiene un coeficiente de impacto de 1,26 (ϕ), siempre del lado de la seguridad.

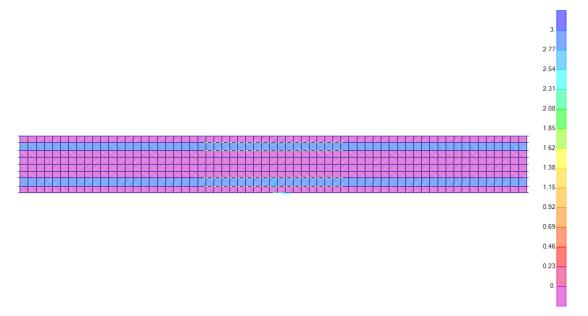
Modelo de cálculo.

Modelo 2D.

Modelo 3D.

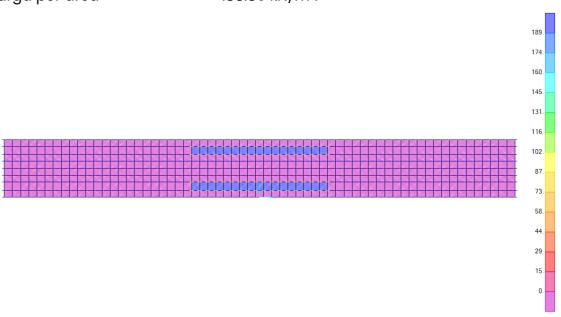


Nudos:

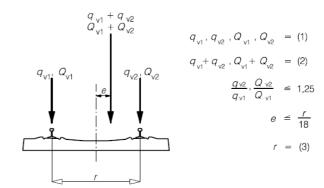

Áreas:

Secciones:

La carga distribuida sobre la losa estará en un área de 39.74 cm x 666 cm (2.647 m²). Las cargas aplicadas en el modelo han sido:


- **Peso propio** lo calcula internamente el programa.
- Carga muerta.

Sobrecarga de uso.


Carga por aréa

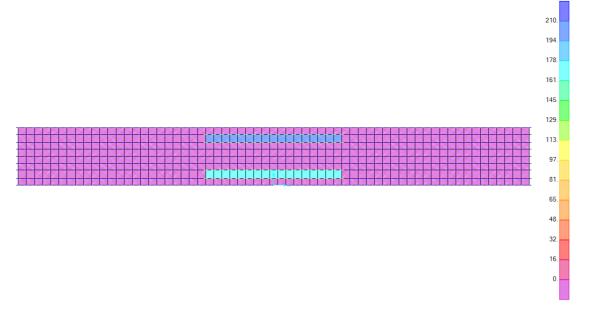
188.89 kN/m².

Los valores anteriores se mayorarán por 1,21 del coeficiente de clasificación y 1,26 de impacto (total 1,5246), valor que se introducirá al combinar las acciones.

Además, será necesario evaluar la excentricidad de cargas según se marca en la IAPF-07/Eurocódigo:

Sobrecarga de uso aplicando la excentricidad quedará:

Máxima carga distribuda:


 $Q_1 = 209,89 \text{ kN/m}^2$.

Mínima carga distribuda:

 $Q_2 = 167,90 \text{ kN/m}^2$.

A los valores anteriores se les aplica los coeficientes de clasificación e impacto.

• **Gradiente térmico**, el cálculo se realiza siguiendo la normativa en vigor, que para una losa maciza de hormigón se aplicará la siguiente expresión:

$$\Delta T_{SI} = (K_1 K_2) \Delta T_{SI,ref}$$

Donde:

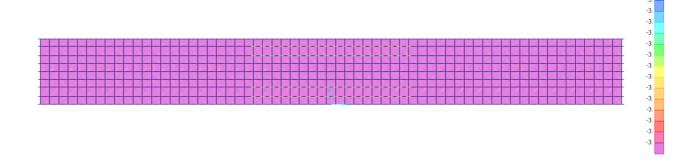
$$K_1 = 1,16$$
.

$$K_2 = 1.0.$$

$$\Delta T_{Sl.ref} = 8,50^{\circ}$$
.

Con lo que se obtiene un valor del gradiente de ΔT^+_{si} = 9,86 °C y en el caso negativo se tendrá:

TABLEROS DE HORMIGÓN		
CON BALASTO SIN BALASTO		
_	-3,0 °C	


$$\Delta T_{SI} = -3.0 \, ^{\circ}C.$$

Siendo estos los valores de gradiente a aplicar en el modelo.

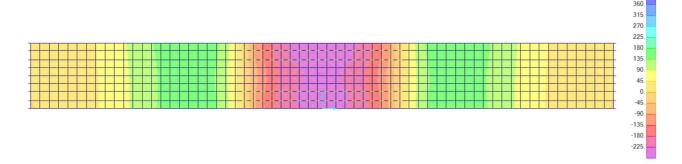
Gradiente positivo.

Gradiente negativo.

3.2.4.2 Verificación de tensiones (ELS).

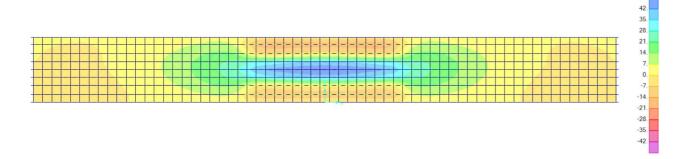
Una vez que se tienen las cargas en el modelo se combinan y en primer lugar se verifican las tensiones (ELS) con la finalidad de evaluar la necesidad o no de armado.

Se debe tener en cuenta que para un hormigón de 30 MPa los limites tensionales son:


Tracción 2,0 MPaCompresión 18,0 MPa.

A continuación se verifican las tensiones en servicio, teniendo en cuenta la acción de gradiente térmico que suele ser condicionante en este tipo de estructuras.

Tensión longitudinal:



 $\sigma = \pm 3.222,00$ kN/m².

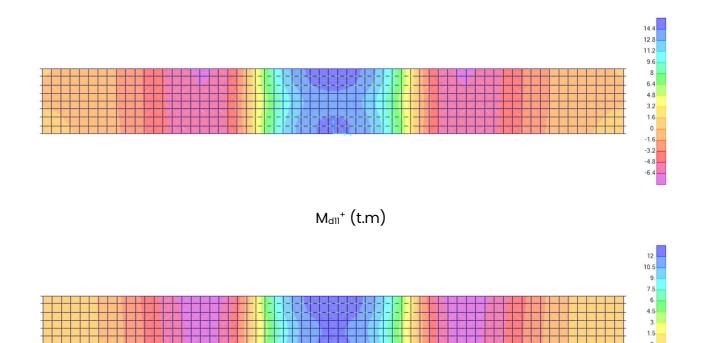
Tensión transversal:

$$\sigma = \pm 514,76 \text{ kN/m}^2$$
.

Se sobrepasa la tensión admisible por lo que se requiere la disposición de armadura que se procederá a calcular más adelante.

3.2.4.3 Deformaciones.

Las deformaciones esperadas al paso del ferrocarril serán:


 δ = 4,66 mm.

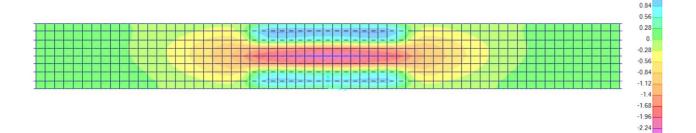
3.2.4.4 Armado de la losa de vía en placa.

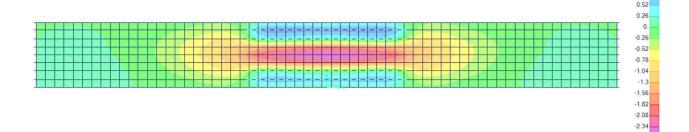
Una vez verificada la necesidad de disponer armadura en la placa en primer lugar, se

determinarán los <u>esfuerzos</u> en ELU, tanto en sentido longitudinal como en transversal.

Momento longitudinal:

 $M_{d11}^{-}(t.m)$.




El resumen de momentos flectores para el dimensionamiento será el mostrado a continuación:

Espesores	0,45 m
M _{d11} + (kN.m)	154,40
M _{d11} -(kN.m).	-86,47

Momento transversal:

$$M_{d22}^{+}$$
 (t.m).

$$M_{d22}^{-}(t.m)$$
.

A continuación se muestra el resumen de los valores de esfuerzos:

Espesores	0,45 m
M _{d22} + (kN.m)	15,37

M _{d11} -(kN.m).	-26,00

Aunque no sería estructuralmente necesario disponer armado en sentido transversal.

Armado de la sección.

Cuantía mínima longitudinal:

La cuantía mínima necesaria para permitir su ejecución continua estará entre el 0,80 y el 0,9 % del área (fisuración controlada).

- $(0.8 \times (1.26 \text{ m}^2 * 10000)) / 100 = 100.80 \text{ cm}^2$.
- $(0.9 \text{ x} (1.26 \text{ m}^2 * 10000)) / 100 = 113.40 \text{ cm}^2.$

En el caso de disponerse juntas la cuantía minima según el Codigo estrcutural en el apartado 9.3

$$A_{s,\min} = \frac{W}{z} \frac{f_{ctm,fl}}{f_{vd}} \tag{9.1}$$

donde:

es el brazo mecánico en las sección en Estado Límite Último, que puede calcularse de forma aproximada como z = 0,8h,

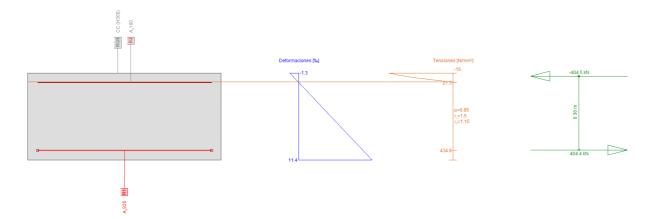
v es el módulo resistente de la sección bruta relativo a la fibra más traccionada.

 $f_{ctm,fl}$ es la resistencia media a flexotracción,

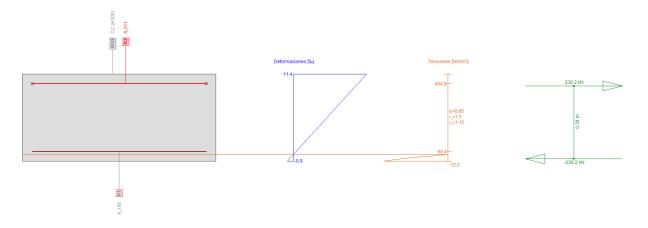
 f_{yd} es la resistencia de cálculo de las armaduras pasivas en tracción.

$$A_{s,min} = \frac{\frac{100 * 45^2}{6}}{0.8 * 45} * \frac{2.9}{500/1.15} = 6.25 \text{ cm}^{2}/m$$

Armadura obtenida por esfuerzos:

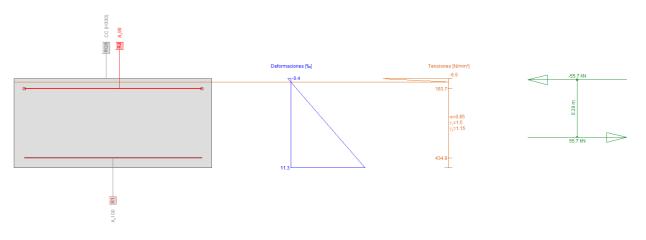

A continuación se procederá a obtener el armado necesario para los esfuerzos a los que quedará sometida la losa de vía en placa.

Longitudinalmente.

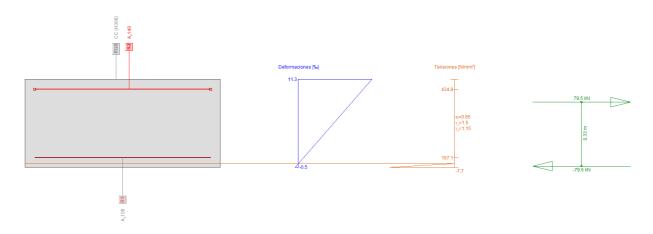


Momentos positivos 154,40 kNm.

As ≥ 926 mm².


Momentos negativos -86,47 kNm.

As ≥ 511 mm².


Transversalmente.

Momentos positivos 15,37 kNm.

As ≥ 90 mm².

Momentos negativos -26,00 kNm.

As ≥ 148 mm².

3.2.4.5 Temperatura y retracción.

A continuación, se verificará la armadura necesaria para garantizar a fisuración controlada (W_k).

$$A_s * \sigma_s \ge A_c * \sigma_{ct}$$

$$\sigma_s = 250 \text{ N/mm}^2$$

$$A_c = 1,26 \text{ m}^2*1.000.000 = 1.260.000 \text{ mm}^2.$$

$$\sigma_{ct} = 2,03 \text{ N/mm}^2$$

$$A_s = 10.231,20 \text{ mm}^2.$$

Control de fisuración.

Tabla 7.2N - Diámetro máximo de barras ø's para control de la fisuración¹

Tensión del acero ²	Diámetro máximo de la barra [mm]						
[MPa]	$w_k = 0.4 \text{ mm}$	w _k = 0,3 mm	$w_k = 0.2 \text{ mm}$				
160	40	32	25				
200	32	25	16				
240	20	16	12				
280	16	12	8				
320	12	10	6				
360	10	8	5				
400	8	6	4				
450	6	5	=				

Tabla 7.2 N Eurocódigo

Tabla 7.3N - Separación máxima de barras para control de la fisuración1

Tensión del acero ²	Separación máxima de barras [mm]						
[MPa]	$w_{\rm k}$ = 0,4 mm	$w_k = 0.3 \text{ mm}$	w _k = 0,2 mm				
160	300	300	200				
200	300	250	150				
240	250	200	100				
280	200	150	50				
320	150	100	; -				
360	100	50	-				

Tabla 7.3 N Eurocódigo

Por lo que con la limitación 250 MPa se garantizaría la respuesta de la placa a fisuración controlada (ancho de grietas Wk ≤ 0,50 mm y distancia entre grietas < 5 m).

3.2.4.6 Verificación a fatiga (hormigón y acero).

Aunque según en apartado 6.8.1 del Eurocódigo 2 no sería necesaria realizar la verificación a fatiga al tratarse de una estructura asimilable a cimentación; a continuación, se procederá a su verificación tanto para el hormigón como del acero.

Los trenes de carga a emplear para el cálculo a fatiga serán los descritos en el apartado D.3 del Anexo D del Eurocódigo 1.

Hormigón.

Siguiendo la expresión del Eurocódigo 2 - Parte 2 (apartado 6.8 Fatiga) el valor de cálculo de la resistencia a fatiga del hormigón se obtiene de la siguiente expresión:

$$f_{\text{cd,fat}} = \text{K}_1 \beta_{\text{cc}} (t_0) f_{\text{cd}} \left(1 - \frac{f_{\text{ck}}}{250} \right)$$

- f_{cd, fat} valor de cálculo de la resistencia a fatiga del hormigón.
- $\beta_{cc}(t_0)$ coeficiente para la resistencia del hormigón en la primera puesta en la carga.
- t_o = tiempo de inicio de la carga cíclica en hormigón en días.

$$\beta_{\text{CC}}(t) = \exp \left\{ s \left[1 - \left(\frac{28}{t} \right)^{1/2} \right] \right\}$$

s = coeficiente que depende del tipo de cementos.

Sustituyendo se obtiene:

 $f_{cd. fat} = 14.96 \text{ MPa.}$

$$\begin{split} f_{cd,fat} &= 0.85 * 1.0 * 20 * (1-30/250) = 14.96 \text{ MPa.} \\ k_1 &= 0.85. \\ t &= 28 \text{ days.} \\ s &= 0.38. \\ \beta_{cc}(t_0) &= \exp\left(0.38*(1-(28/28)^{\circ}0.5)\right) = 1.0 \text{ (no depende de s).} \\ f_{cd} &= 30/1.5 = 20 \text{ MPa.} \\ f_{ck} &= 30 \text{ MPa.} \end{split}$$

En cálculo se han obtenido tensiones máximas de 3,22 MPa cuando la losa queda sometida a la acción de la temperatura junto al ferrocarril, por lo cual es adecuado.

Armadura pasiva.

Siguiendo la expresión del Eurocódigo 2 - Parte 1.1, apartado 6.8.4 el límite de la resistencia a fatiga viene definida por la siguiente expresión:

$$\gamma_{\mathsf{F},\mathsf{fat}} \cdot \Delta \sigma_{\mathsf{S},\mathsf{equ}} \left(N^* \right) \leq \frac{\Delta \sigma_{\mathsf{Rsk}} \left(N^* \right)}{\gamma_{\mathsf{s},\mathsf{fat}}}$$

Donde:

- γ_{F,fat} = 1.0 (valor recomendado).
- Δσ_{Rsk}(N*) rango de tension resistente obtenido a los N* ciclos, determinado mediante las curva S-N de la figura 6.30 y tabla 6.3N.

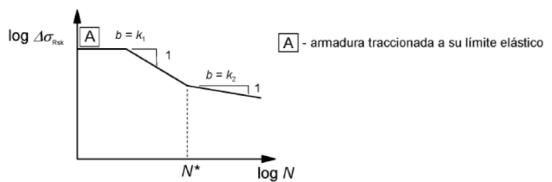


Figura 6.30 – Forma de la curva de resistencia a fatiga característica (curvas S-N para armaduras activas y pasivas)

Tabla 6.3N – Parámetros para curvas S-N de armaduras pasivas

Time de como dome mesion		Exponente de	Δσ _{Rsk} (MPa)	
Tipo de armadura pasiva	N*	<i>k</i> 1	k2	en N* ciclos
Barras rectas y dobladas¹	106	5	9	162,5
Barras soldadas y mallas electrosoldadas	107	3	5	58,5
Dispositivos de empalme	107	3	5	35

NOTA 1 Los valores para 🗅 🙉 kon para barras rectas. Los valores para barras dobladas se deberían obtener usando un factor de reducción $\zeta = 0.35 + 0.026 D / \phi$.

D diámetro del mandril diámetro de la barra

 $\gamma_{S,fat}$: los coeficientes parciales de seguridad para el cálculo de fatiga ($\gamma_{C,fat}$ and $\gamma_{S,fat}$) se obtienen de la tabla 2.1N.

Tabla 2.1N – Coeficientes parciales de seguridad para materiales para estados límite últimos

Situaciones de proyecto	γc para hormigón	γs para acero de armadura pasiva	γs para acero de armadura activa
Persistente y transitoria	1,5	1,15	1,15
Accidental	1,2	1,0	1,0

• $\Delta\sigma_{\text{Sequ}}(N^*)$: rango tensional de daños equivalente para diferentes tipos de armadura y teniendo en cuenta el número de ciclos N*. $\Delta \sigma_{s,equ}(N^*)$ puede aproximarse a $\Delta \sigma_{s,max}$ (rango máximo de tensiones del acero bajo las combinaciones de carga relevante). Obtniendo un valor de:

$$\Delta \sigma_{\text{Sequ}} (N^*) = \Delta \sigma_{\text{Rsk}} (N^*) / (\gamma_{\text{F,fat}} * \gamma_{\text{S,fat}}) = 162.5 / (1.00 * 1.15) = 141.30 \text{ MPa}$$

A continuación se verificará la tensión de la armadura tanto en sentido longitudinal como transversal.

Armado longitudinal.

Los momentos flectores obtenido bajo las cargas de fatiga han sido:

Espesores	0,45 m
M _{fat,11} ⁺ (kN.m)	38,60
M _{fat,11} -(kN.m).	-21,62

 $M_{\text{fat.}11}^{+} = 38,60 \text{ kN.m/m}$ con un armado de $7\phi20/\text{m}$.

Hormig	<mark>ón </mark>		Momento flector				
f _{ck} (Mpa)		30 M		.m) 38.60			
f _{ctk} (Mpa)		2.03					
Sección					Refuerzo		
anchura (m)	1.0				f _y (Mpa)		500.0
canto (m)	0.45			$\Delta \sigma S_{equ}$ (N*) (Mpa))	141.3
recubrimiento (cm)	3.5			Diametro (mm)		n)	20
d (m)	0.230			barras		as	7
I (m ⁴)	0.00759375			Area (mm²)		²)	2199.11
y _{cdg} (m)	0.225						
	σ _c (Mpa)		1.14	N	o Craking		
	σ _s (Mpa)		6.05	О	K		

 $M_{\text{fat,II}}^- = -21,62 \text{ kN.m/m}$ con un armado de $7\phi12/\text{m}$.

	Hormig	<mark>ón</mark>	Momento flector					
	f _{ck} (Mpa)		30		n)	21.60		
	f _{ctk} (Mpa)		2.03					
Secció	n					Refuerzo		
an	anchura (m)				f _y (Mpa)			500.0
	canto (m)	0.45			ΔσS _{equ} (N*) (Mpa)		141.3	
recubrimi	ento (cm)	3.5			Diametro (mm)		12	
d (m)		0.238			barras		ras	7
I (m ⁴))	0.00759375			Area (mm²)		n ²)	791.68
y _{cdg} (n	ո)	0.225						
		σ_c (Mpa)		0.64	N	No Craking		
		σ _s (Mpa)	lpa)		C	OK		

El armado longitudinal dispuesto cumple con las limitaciones de fatiga y con margen, como era de esperar.

Armado transversal.

Los momentos flectores obtenido bajo las cargas de fatiga han sido:

Espesores	0,45 m
M _{fat,22} + (kN.m)	3,84
M _{fat,22} -(kN.m).	-6,50

 $M_{fat,22}^{+} = 3,84 \text{ kN.m con un armado de } 6\phi12/\text{m}.$

Hormigón

f_{ck} (Mpa)

f _{ctk} (Mpa)		2.03		
Sección			Refuerzo	
anchura (m)	1.0		f _y (Mpa)	500.0
canto (m)	0.45		$\Delta \sigma S_{equ}$ (N*) (Mpa)	141.3
recubrimiento (cm)	3.5		Diametro (mm)	12
d (m)	0.238		barras	6
I (m ⁴)	0.00759375		Area (mm²)	678.58
y _{cdg} (m)	0.225			

Momento flector

3.86

 $30 M_k (kN.m)$

σ_c (Mpa)	0.11	No Craking
σ _s (Mpa)	0.63	ОК

 $M_{fat,22}^- = -6,50$ kN.m con un armado de $6\phi12/m$.

	Hormigo	<mark>ón</mark>	Momento flector					
f _{cl}	_k (Mpa)		30	M _k (kN.m)		6.50		
f _{ct}	tk (Mpa)		2.03					
Sección						Refuerzo		
anch	ura (m)	1.0				f _y (Mpa)		500.0
ca	nto (m)	0.45			$\Delta \sigma S_e$	equ (N*) (Mpa))	141.3
recubrimien	ito (cm)	3.5			- 1	Diametro (mr	n)	12
d (m)		0.238				barra	as	6
I (m ⁴)		0.00759375				Area (mm	1 ²)	678.58
y _{cdg} (m)		0.225						
		σ _c (Mpa)		0.19	N	o Craking		
		σ _s (Mpa)		1.07	0	K		

El armado transversal dispuesto cumple con las limitaciones de fatiga y con margen, como era de esperar.

Con la cuantía de armado dispuesta se requerirá disponer juntas.

3.2.4.7 Capas de apoyo.

Una vez dimensionada la vía en placa se verifica que las capas del apoyo se comportan adecuadamente y no tienen problemas de fatiga durante su vida útil.

Las tensiones trasmitidas por sección de vía en placa sobre la litología será la siguiente:

La losa propuesta con la tensión transmitida sería:

Losa vía en placa				
Ancho	2.80	m		
espesor	0.24	m		
σ	67.52	kN/m ² .		

La prelosa propuesta con la tensión bajo ella:

Prelosa				
Ancho	3.40	m		
espesor	0.30	m		
σ_{s}	55.61	kN/m².		

Si apoya en una capa con módulo de compresibilidad mínimo de 100 MPa la tensión admisible será ≥0,11 MPa, por lo que analizando la fatiga de la capa de apoyo sería adecuado para la vida útil de diseño.

4 DESVIO EN VÍA EN PLACA ACCESO AL PUERTO.

Aparato polivalente para vía en placa tipo P1, con fijación directa a losa de hormigón y sujeción elástica en todos los puntos, incluyendo la interior de las contraagujas.

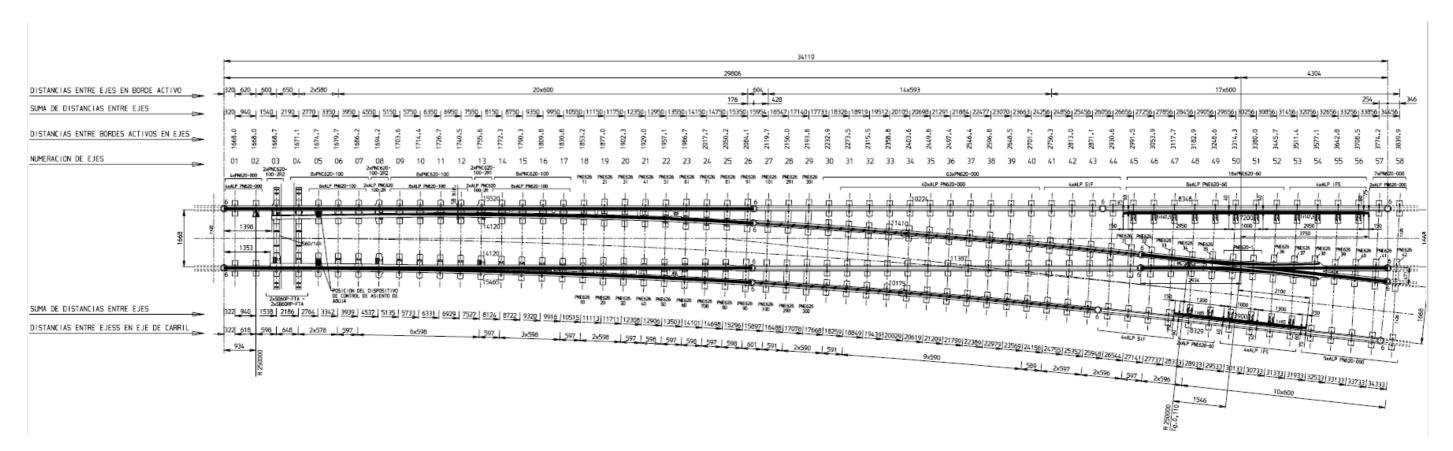
Las características generales del sistema son:

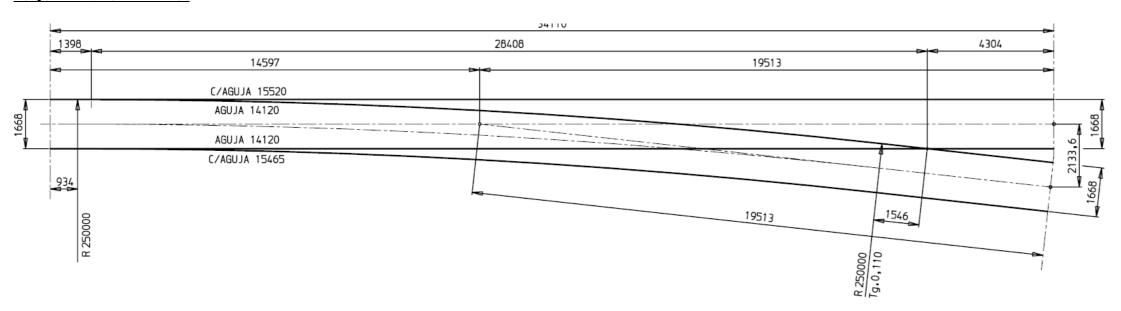
- Carril 60El (inclinación 1/20)
- Ancho de vía sobre elemento montado:
 - Sujecion directa polivalente: 1.435 mm ó 1.668 mm
- Distancia entre puntos de sujecion 0,65 m (max)
- Sistema de sujecion con una rigidez dinámica a baja frecuencia dentro del rango 30-50 kN/mm, medida según UNE-EN 13146-9, a 10 Hz y temperatura ambiente (unos 33 kN/mm en estático).

La geometría de la placa será de espesor 0,45 m y ancho variable, ejecutada sobre una capa de hormigón de limpieza.

Las características del trazado en el que se encajará la vía en placa serán las siguientes:

- $V_{max} = 30 \text{ km/h}.$
- $R_{min} = 200 \text{ m}.$


A continuación se muestra un esquema del desvío.



PLANO DE DISPOSICIÓN EN PLANTA DEL APARATO:

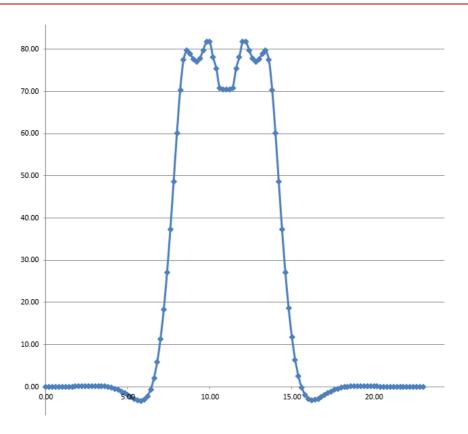
ESQUEMA GEOMÉTRICO:

4.1 COMPORTAMIENTO LONGITUDINAL

En primer lugar, se evaluará el comportamiento longitudinal respecto a las **cargas verticales** lo que incluye:

 Reparto longitudinal en función de la rigidez estática y dinámica, que coincidirá con la mostrada para vía general y resumida a continuación:

Rigidez estática: 33 kN/mm/m.

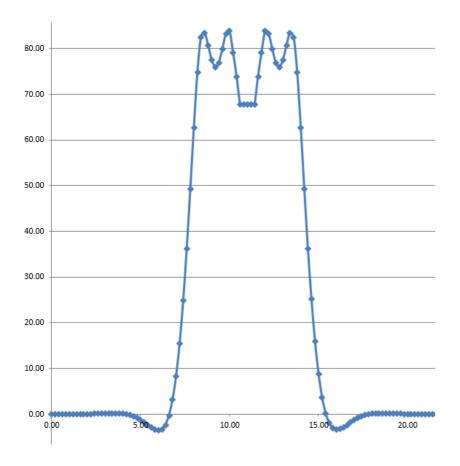

Teoría de Zimmerman.

Zimmerman theory
Rail

The characteristic length in this theory is: $L = \sqrt[4]{\frac{4EI}{k}}$ E 210000 N/mm2
I 2346 cm4 Carril UIC-54
k 33 kN/mm/m Elastomero bajo carril

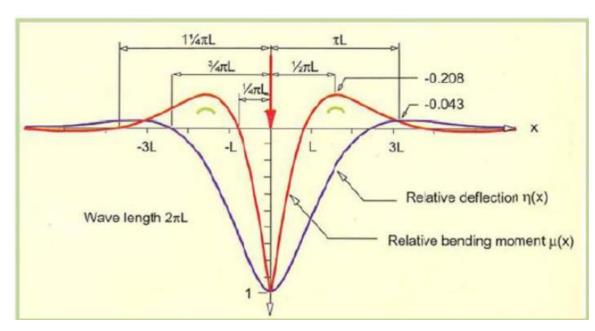
Characteristic length (L) 879.07 mm

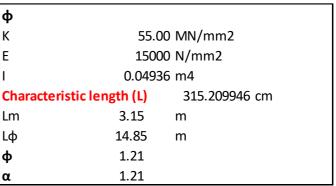
El comportamiento de los ejes del tren de la normativa (UIC-71) se representa a continuación.


En el caso de rigidez dinámica 50 kN/mm/m

Zimmerman 1	theory		
Rail			
The characte	eristic length in	n this theory	is: $L = \sqrt[4]{\frac{4EI}{k}}$
E	210000	N/mm2	
I	2346	cm4	Carril UIC-54
k	50	kN/mm/m	Elastomero bajo carril
Characteristic	length (L)	792.34	mm

El conjunto de ejes del tren de cargas viene representado a continuación.





Se observa claramente que el reparto final de cargas que se podrá adoptar depende de la rigidez del sistema, siendo posible realizarlo en una longitud mayor que la prescrita en la normativa.

Determinación del coeficiente de impacto (según normativa alemana)
 El esquema de comportamiento bajo la carga de un eje, y la relación con la longitud característica es la mostrada a continuación:

No se debe olvidar que según el Eurocódigo en plataforma el coeficiente de impacto tendría el valor de 1,0, pero para dejar los cálculos del lado de la seguridad y siguiendo el proceso de cálculo se empleará el valor obtenido anteriormente (1,16).

4.2 FUERZAS HORIZONTALES.

Según se ha comentado estas acciones vendrán trasmitidas por las sujeciones a la losa y esta debe ser capaz de transmitirlas por contacto a la capa inferior.

Las acciones que darán lugar a fuerzas horizontales serán:

- Frenado y arranque.
- Fuerza centrífuga.

Lazo.

El valor de cada una de las acciones viene fijado por la normativa en vigor siendo:

Frenado y arranque.

24,2 kN/m. Frenado

39,93 kN/m. Arranque

Fuerza centrífuga.

Depende de la geometría y velocidad en el tramo más desfavorable que son:

Radio mínimo 200 m.

30 km/h. Velocidad

$$Q_{tk} = \alpha \cdot \frac{Q_{v,k} \cdot v^2}{q \cdot r} \cdot t$$

$$Q_{tk} = \alpha \cdot \frac{Q_{v,k} \cdot v^2}{g \cdot r} \cdot f$$
$$Q_{tk} = \alpha \cdot \frac{q_{v,k} \cdot v^2}{g \cdot r} \cdot f$$

Q_{tk} (KN)	Valor de la	fuerza centrífuga de la carga puntual
q_{tk} (KN/m)	Valor de la	fuerza centrífuga de la carga uniforme
v (km/h)	30	Velocidad del ferrocarril
α	1.21	Coeficiente de clasificación a emplear

1.21 α g (m/s) 9.81 Aceleración de la gravedad r (m) 200 radio de la curva en planta 1.000 coeficiente reductor

Longitud de vía cargada que produce el efecto más desfavorble 2.88 $L_f(m)$

Q _{eje} (KN)	125
q _{distribuida} (KN/m)	80
Q _{tk} (KN)	15.42
q_{tk} (KN/m)	9.87

Valores por carril

 Q_{tk} (KN) 7.71 q_{tk} (KN/m) 4.93

121 kN. Lazo

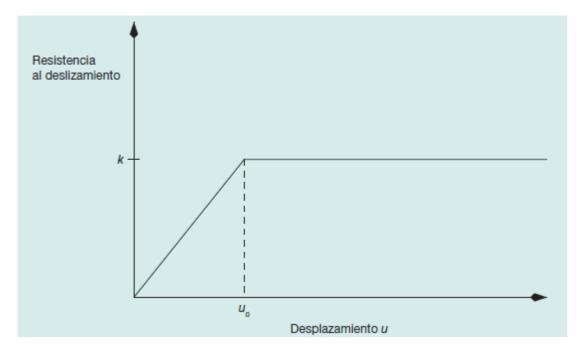
Evaluando la fuerza horizontal debido a la fuerza centrífuga con un rozamiento mínimo entre capas de hormigón se tendría:

Rozamiento en contacto

Peso propio 16.80 kN/m Carga vertical 125 kΝ 0.65 Longitud m 0.6 μ μN 81.55 kN 7.71 F_{c máxima}

10.58 No Desliza $\gamma_{\text{seguridad}}$

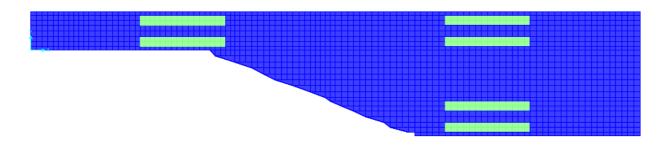
Las acciones transversales combinadas según normativa, y a soportar por cada banda 0,65 m.


> Frenado y Arranque + Lazo = 52.96343 < 81.55 OK OK Fuerza Centrífuga + Lazo = 28.72968 < 81.55 Frenado y Arraque + Lazo + 50%Centrífuga = 53.8238 < 81.55 OK Centrífuga + 50%Frenado y Arranque + Lazo = 41.70693 < 81.55 OK

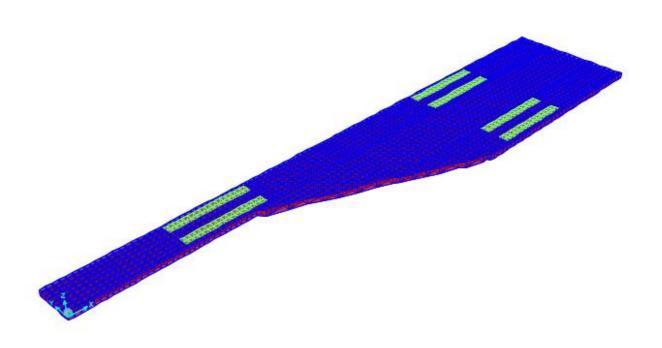
Se garantiza que no existirá problemas, ya que se ha considerado un valor mínimo de rozamiento mientras siendo mayor en la realidad.

Independientemente de lo anterior, y como ya se ha reflejado para las tipologías de vía general, analizando la ley de comportamiento de la vía en placa la fuerza horizontal que le llegaría a cada metro de losa está limitada por las sujeciones:

 $u_0 = 0.5 \text{ mm}.$

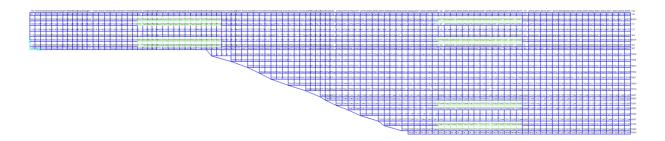

k = 40 kN/m, para vía descargada.

k = 60 kN/m, para vía cargada (sólo en la zona cargada).

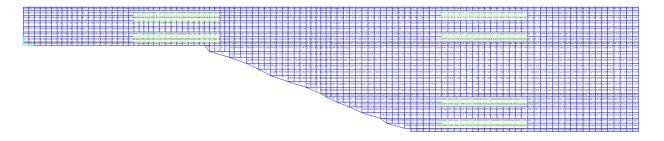

Cumple con los resultados obtenidos anteriormente.

4.3 MODELO DE CÁLCULO.

Para el dimensionamiento de la vía en placa se realiza un modelo de 2,80 – 10,00 m de anchura, 50 m de longitud y 0,45 m de espesor, apoyado sobre un lecho elástico ($K_v = 6.400 \text{ kN/m}^3$).



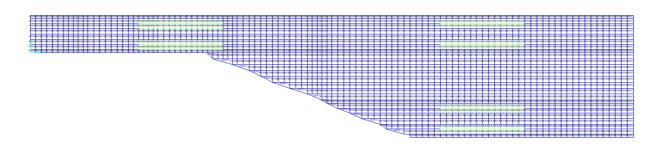
Modelo 2D.



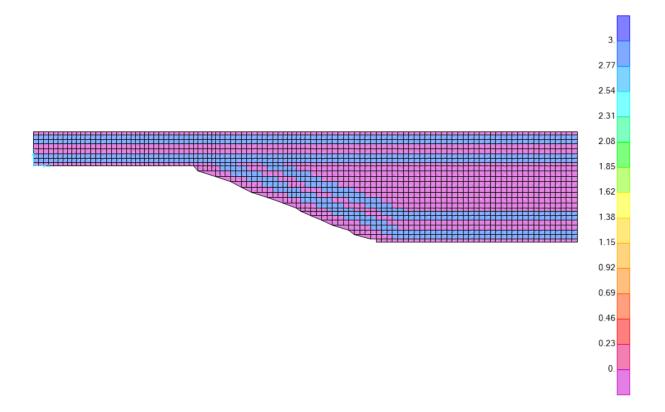
Modelo 3D.

Nudos.

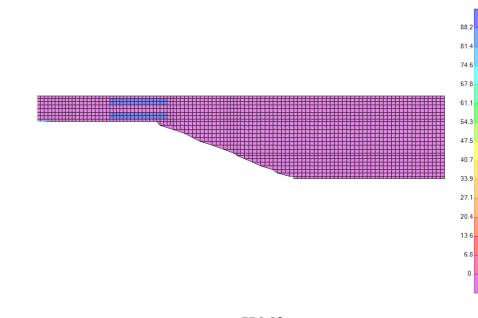
Áreas.

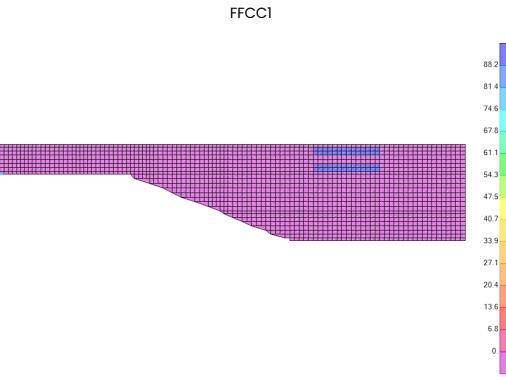


Secciones.



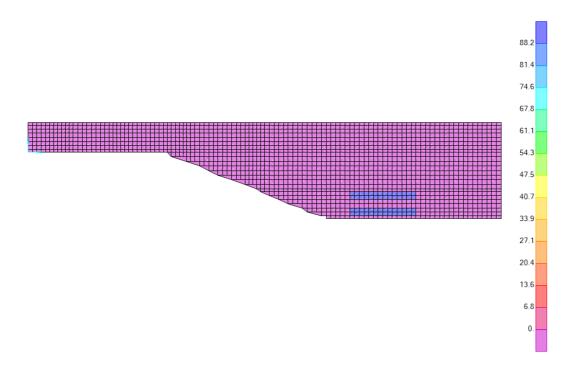
La carga distribuida sobre la losa estará en un área de 81 cm x 700 cm (5.67 m²). Las cargas aplicadas en el modelo han sido:


- **Peso propio** lo calcula internamente el programa.
- Carga muerta:

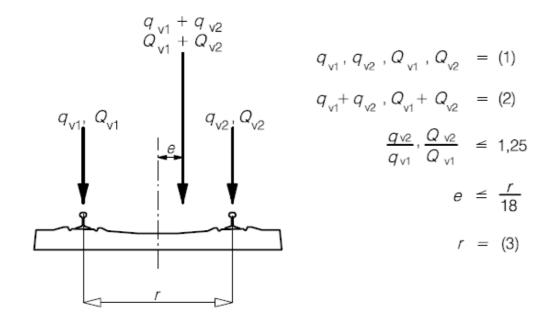


Carga por aréa

88,20 kN/m².



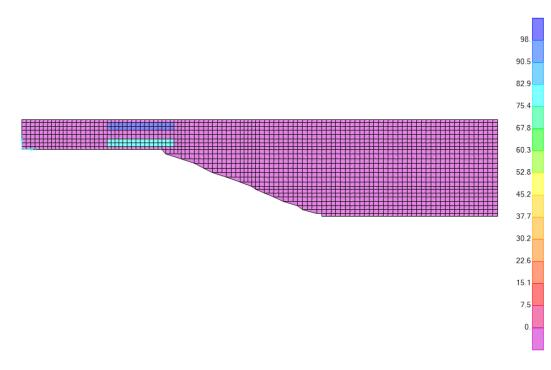
FFCC2



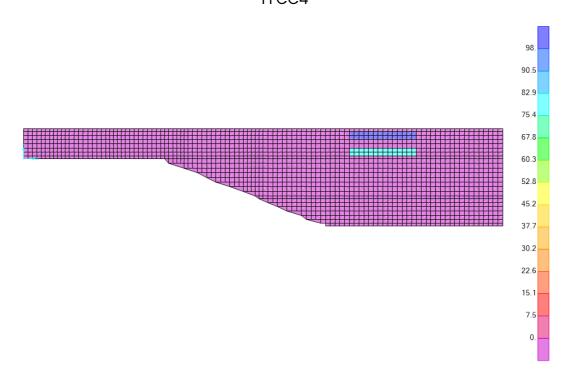
FFCC3

Los de las acciones anteriores (FFCC1,FFCC2 y FFCC3) se mayorarán por 1,21 del coeficiente de clasificación y 1,21 de impacto (total 1,464).

Además, será necesario evaluar la excentricidad de cargas según se marca en la IAPF-07/Eurocódigo:


Sobrecarga de uso aplicando la excentricidad quedará:

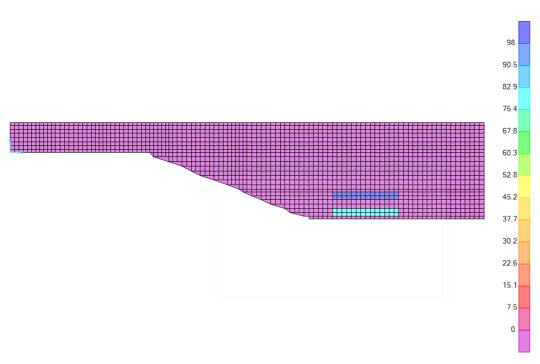
Máxima carga distribuda:


 $Q_1 = 97,98 \text{ kN/m}^2$.

Mínima carga distribuda:

 $Q_2 = 78,38 \text{ kN/m}^2$.

FFCC4



FFCC6

Al igual que las cargas de anteriores las excéntricas de ferrocarril (FFCC4, FFCC5 y FFCC6) se les aplica los coeficientes de clasificación e impacto, lo que supone un total de 1,464.

• **Gradiente térmico**, el cálculo se realiza siguiendo la normativa en vigor, que para una losa maciza de hormigón se aplicará la siguiente expresión:

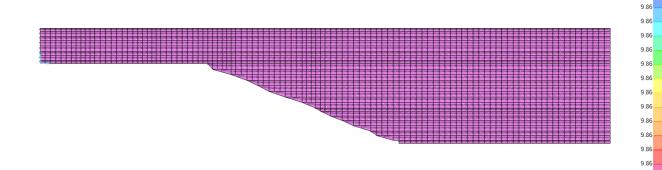
$$\Delta T_{SI} = (K_1 K_2) \Delta T_{SI,ref}$$

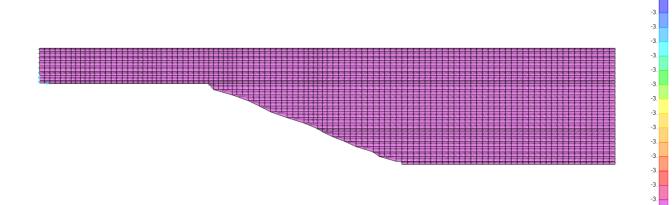
Donde:

$$K_1 = 1,16$$
.

$$K_2 = 1,0.$$

$$\Delta T_{Sl,ref} = 8,50^{\circ}$$
.

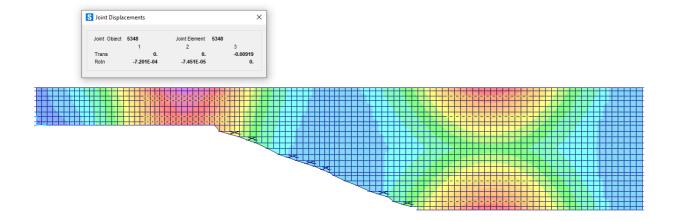

Con lo que se obtiene un valor del gradiente de $\Delta T +_{SI} = 9,86$ °C y en el caso negativo se tendrá:


$$\Delta T_{SI} = -3.0 \, ^{\circ}C.$$

Siendo estos los valores de gradiente a aplicar en el modelo.

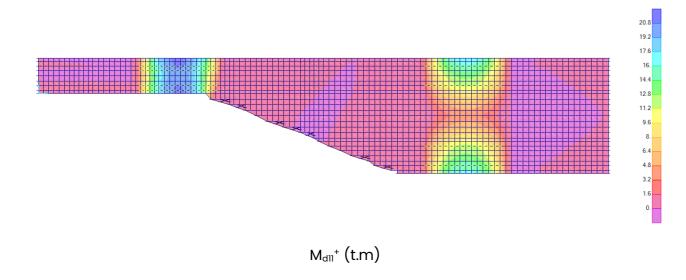
Gradiente positivo:

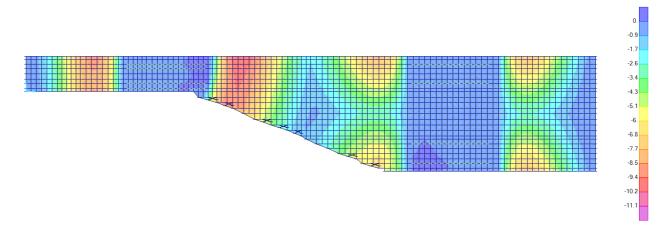
Gradiente negativo:



4.4 DEFORMACIONES:

La máxima deformación obtenida al paso del ferrocarril ha sido la mostrada a continuación:

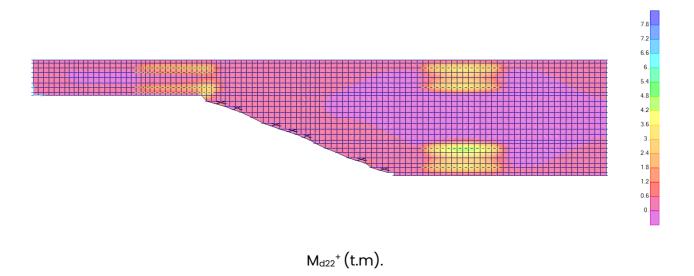

 δ =9,19 mm.


En el orden de lo esperado según la información geotécnica.

4.5 ARMADO.

En primer lugar, se determinarán los esfuerzos en ELU tanto en sentido longitudinal como en transversal.

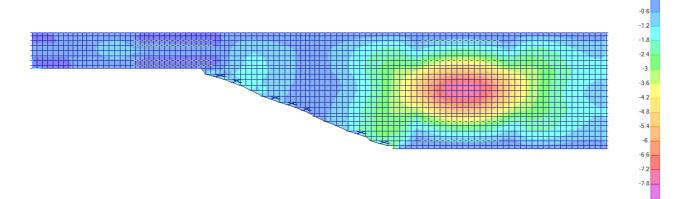
Momento longitudinal:



 $M_{d11}^{-}(t.m)$.

El resumen de momentos flectores para el dimensionamiento será el mostrado a continuación:

Espesores	0,45 m
M _{d11} + (kN.m)	214,50
M _{d11} -(kN.m).	-115,90


Momento transversal:

 $M_{d22}^{-}(t.m).$

A continuación se muestra el resumen de los valores de esfuerzos:

Espesores	0,45 m
M _{d22} + (kN.m)	77,16
M _{d11} -(kN.m).	-79,57

Analizando la sección obtenemos una cuantía minima según el Codigo estrcutural en el apartado 9.3 para una sección de 1,0 m de anchura:

$$A_{s,\min} = \frac{W}{z} \frac{f_{ctm,fl}}{f_{vd}} \tag{9.1}$$

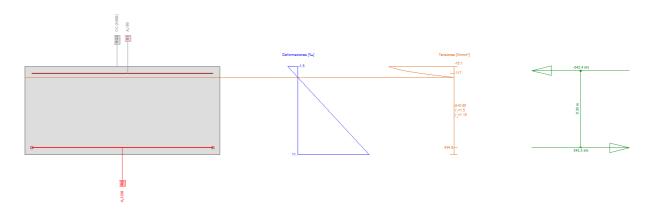
donde:

es el brazo mecánico en las sección en Estado Límite Último, que puede calcularse de forma aproximada como z = 0,8h,

w es el módulo resistente de la sección bruta relativo a la fibra más traccionada.

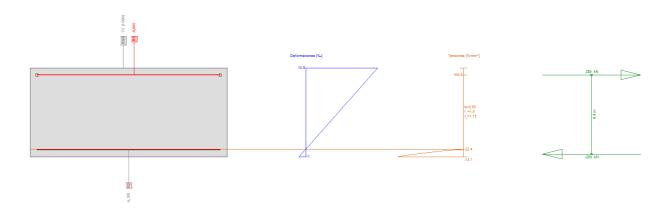
 $f_{\it ctm,fl}$ es la resistencia media a flexotracción,

 f_{vd} es la resistencia de cálculo de las armaduras pasivas en tracción.


$$A_{s,min} = \frac{\frac{100 * 45^2}{6}}{0.8 * 45} * \frac{2.9}{500/1.15} = 6.25 \text{ cm}^{2}/m$$

Armadura obtenida por esfuerzos:

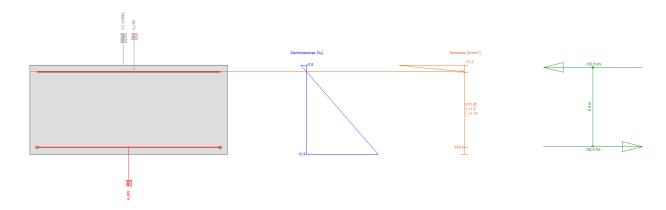
A continuación se procederá a obtener el armado necesario para los esfuerzos a los que quedará sometida la losa de vía en placa.


Longitudinalmente.

Momentos positivos 214,50 kNm.

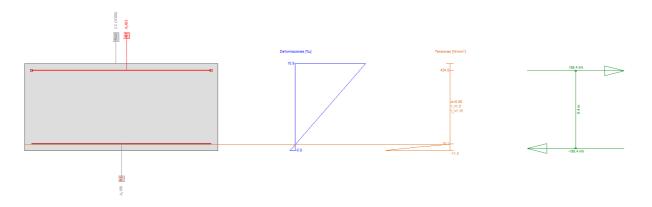
As ≥ 1250 mm².

Momentos negativos -115,90 kNm.


As ≥ 665 mm².

Transversalmente.

Momentos positivos 77,16 kNm.



As ≥ 439 mm².

Momentos negativos -79,57 kNm.

As ≥ 453 mm².

La armadura propuesta en función de los resultados obtenidos serán la siguiente:

- Longitunial:
 - Superior → 7Ø12/m (7,92 cm2/m).
 - Inferior → 7Ø16/m (14,07 cm2/m).
- Transversal ambas caras → 6Ø12/m (6,79 cm2/m)

4.6 VERIFICACIONES A FATIGA.

Aunque según en apartado 6.8.1 del Eurocódigo 2 no sería necesaria realizar la verificación a fatiga al tratarse de una estructura asimilable a cimentación;

a continuación, se procederá a su verificación tanto para el hormigón como del acero.

4.6.1 HORMIGÓN.

Siguiendo la expresión del Eurocódigo 2 - Parte 2 (apartado 6.8 Fatiga) el valor de cálculo de la resistencia a fatiga del hormigón se obtiene de la siguiente expresión:

$$f_{\rm cd,fat} = k_1 \beta_{\rm cc} (t_0) f_{\rm cd} \left(1 - \frac{f_{\rm ck}}{250} \right)$$

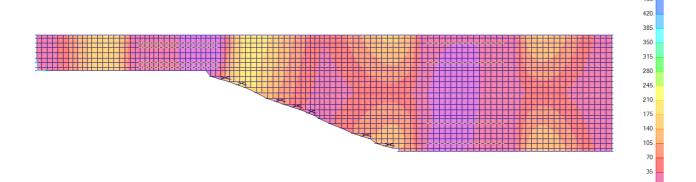
- f_{cd, fat} valor de cálculo de la resistencia a fatiga del hormigón.
- β_{cc}(t₀) coeficiente para la resistencia del hormigón en la primera puesta en la carga.
- t_o = tiempo de inicio de la carga cíclica en hormigón en días.

$$\beta_{cc}(t) = \exp \left\{ s \left[1 - \left(\frac{28}{t} \right)^{1/2} \right] \right\}$$

• s = coeficiente que depende del tipo de cementos.

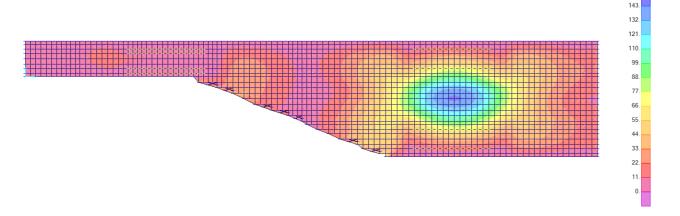
Sustituyendo se obtiene:

$$\begin{split} f_{cd,\,\text{fat}} &= 0.85 \, * \, 1.0 \, * \, 20 \, * \, (1\text{-}30/250) = 14.96 \; \text{MPa}. \\ &\quad k_1 = 0.85. \\ &\quad t = 28 \; \text{days}. \\ &\quad s = 0.38. \\ &\quad \beta_{cc}(t_0) = \text{exp} \; (0.38 * (1\text{-}(28/28)^0.5)) = 1.0 \; (\text{no depende de s}). \\ &\quad f_{cd} = 30/1.5 = 20 \; \text{MPa}. \\ &\quad f_{ck} = 30 \; \text{MPa}. \end{split}$$


El valor de las tensiones al paso del ferrocarril serán:

Longitudinal:

 $f_{cd, fat} = 14.96 \text{ MPa}.$



 $\sigma_{11} = 423,99 \text{ t/m}^2$.

Transversal:

 $\sigma_{22} = 150,82 \text{ t/m}^2$.

En cálculo se han obtenido tensiones máximas de 4,24 MPa lo cual es adecuado.

4.6.2 ARMADURA PASIVA.

Siguiendo la expresión del Eurocódigo 2 - Parte 1.1, apartado 6.8.4 el límite de la resistencia a fatiga viene definida por la siguiente expresión:

$$\gamma_{\mathsf{F},\mathsf{fat}} \cdot \Delta \sigma_{\mathsf{S},\mathsf{equ}} \left(\mathcal{N}^{\star} \right) \leq \frac{\Delta \sigma_{\mathsf{Rsk}} \left(\mathcal{N}^{\star} \right)}{\gamma_{\mathsf{s},\mathsf{fat}}}$$

Donde:

- γ_{F,fat} = 1.0 (valor recomendado).
- $\Delta\sigma_{Rsk}(N^*)$ rango de tension resistente obtenido a los N^* ciclos, determinado mediante las curva S-N de la figura 6.30 y tabla 6.3N.

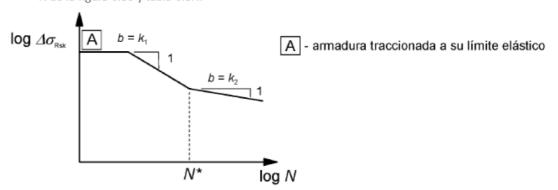


Figura 6.30 – Forma de la curva de resistencia a fatiga característica (curvas S-N para armaduras activas y pasivas)

Tabla 6.3N - Parámetros para curvas S-N de armaduras pasivas

Tipo de armadura pasiva		Exponente de	Δσ _{Rsk} (MPa)	
		k_1	k 2	en N* ciclos
Barras rectas y dobladas¹	10 ⁶	5	9	162,5
Barras soldadas y mallas electrosoldadas	10 ⁷	3	5	58,5
Dispositivos de empalme	107	3	5	35

NOTA 1 Los valores para $\Delta \sigma_{\rm Risk}$ son para barras rectas. Los valores para barras dobladas se deberían obtener usando un factor de reducción $\zeta=0.35+0.026$ D / ϕ .

- D diámetro del mandril
- φ diámetro de la barra
- $\gamma_{s,fat}$: los coeficientes parciales de seguridad para el cálculo de fatiga ($\gamma_{c,fat}$ and $\gamma_{s,fat}$) se obtienen de la tabla 2.1N.

Tabla 2.1N – Coeficientes parciales de seguridad para materiales para estados límite últimos

Situaciones de proyecto	γc para hormigón	γs para acero de armadura pasiva	γs para acero de armadura activa
Persistente y transitoria	1,5	1,15	1,15
Accidental	1,2	1,0	1,0

• $\Delta\sigma_{\text{Sequ}}$ (N*): rango tensional de daños equivalente para diferentes tipos de armadura y teniendo en cuenta el número de ciclos N*. $\Delta\sigma_{\text{S,equ}}$ (N*) puede aproximarse a $\Delta\sigma_{\text{S,max}}$ (rango máximo de tensiones del acero bajo las combinaciones de carga relevante). Obtniendo un valor de:

$$\Delta \sigma_{Sequ} (N^*) = \Delta \sigma_{Rsk} (N^*) / (\gamma_{F,fat} * \gamma_{S,fat}) = 162.5 / (1.00 * 1.15) = 141.30 \text{ MPa}$$

A continuación se verificará la tensión de la armadura tanto en sentido longitudinal como transversal.

Armado longitudinal.

Los momentos flectores obtenido bajo las cargas de fatiga han sido:

Espesores	0,45 m
M _{fat,11} ⁺ (kN.m)	53,63
M _{fat,11} -(kN.m).	-28,98

 $M_{\text{fat,11}}^{+} = 53,63 \text{ kN.m/m} \text{ con un armado de } 7\phi 16/\text{m}.$

Hormigón		Momento flector		
f _{ck} (Mpa)	30	M_k (kN.m)	53.63	
f _{ctk} (Mpa)	2.03			

Sección					Refuerzo		
anchu	ıra (m)	1.0			f _y (Mpa)		500.0
can	to (m)	0.45		Δα	S _{equ} (N*) (Mp	a)	141.3
recubrimient	o (cm)	3.5		Diametro (mm		m)	16
d (m)		0.234			barr	ras	7
I (m ⁴)		0.00759375			Area (mm²		1407.43
y _{cdg} (m)		0.225					
		$\sigma_{\rm c}$ (Mpa)	1.59		No Craking		
		σ _s (Mpa)	8.60		ОК		

 $M_{\text{fat,II}}^- = -28,98 \text{ kN.m/m}$ con un armado de $7\phi12/\text{m}$.

Hormig Hormig	<mark>gón</mark>	Momento flector						
f _{ck} (Mpa)		30 M		m)	28.98			
f _{ctk} (Mpa)	2.03						
Sección					Refuerzo			
anchura (m)	1.0				f _y (Mpa)		500.	
canto (m)	0.45			Δσς	_{equ} (N*) (Mp	a)	141.	
recubrimiento (cm)	3.5			D	iametro (mi	m)	1	
d (m)	0.238			barras		as		
I (m ⁴)	0.00759375			Area (mm²)		1 ²)	791.6	
y _{cdg} (m)	0.225							
	σ_{c} (Mpa)		0.86	N	Io Craking			
	σ _s (Mpa)		4.76	С	K			

El armado longitudinal dispuesto cumple con las limitaciones de fatiga y con margen, como era de esperar.

Armado transversal.

Los momentos flectores obtenido bajo las cargas de fatiga han sido:

Espesores	0,45 m
M _{fat,22} + (kN.m)	19,29
M _{fat,22} -(kN.m).	-19,90

 $M_{fat,22}^{+} = 19,29 \text{ kN.m con un armado de } 6\phi12/\text{m}.$

Hormigón		Momento flector			
f _{ck} (Mpa)	30	M _k (kN.m)	19.29		
f _{ctk} (Mpa)	2.03				

Sección		Refuerzo	
anchura (m)	1.0	f _v (Mpa)	
canto (m)	0.45	$\Delta \sigma S_{equ}$ (N*) (Mpa)	141.3
recubrimiento (cm)	3.5	Diametro (mm)	12
d (m)	0.238	barras	6
I (m ⁴)	0.00759375	Area (mm²)	678.58
y _{cdg} (m)	0.225		

σ_{c} (Mpa)	0.57	No Craking
σ _s (Mpa)	3.17	ОК

 $M_{fat,22}^- = -19,90$ kN.m con un armado de $6\phi12/m$.

Hormigón		Momento fle	ector
f _{ck} (Mpa)	30	M _k (kN.m)	19.90
f _{ctk} (Mpa)	2.03		
,			

Sección			Refuerzo	
anchura (<mark>m)</mark> 1.0		f _y (Mpa)	500.0
canto (<mark>m)</mark> 0.45		$\Delta \sigma S_{equ} (N^*) (Mps)$	a) 141.3
recubrimiento (c	<mark>m)</mark> 3.5		Diametro (mr	n) 12
d (m)	0.238		barr	as 6
I (m ⁴)	0.00759375		Area (mm	²) 678.58
y _{cdg} (m)	0.225			
	σ_{c} (Mpa)	0.59	No Craking	
	$\sigma_{\rm s}$ (Mpa)	3.27	ОК	

El armado transversal dispuesto cumple con las limitaciones de fatiga y con margen, como era de esperar.

Con la cuantía de armado dispuesta se requerirá disponer juntas.

4.7 CAPAS DE APOYO.

En el caso de las placas para desvío suelen ir dispuestas sobre una pequeña capa de hormigón en masa o de nivelación, a diferencia que en vía general no se suele disponer prelosa.

La máxima tensión transmitida por la losa del desvío será:

Losa vía en placa							
Ancho		2.80	m				
espesor		0.24	m				
	σ_{s}	67.52	kN/m².				

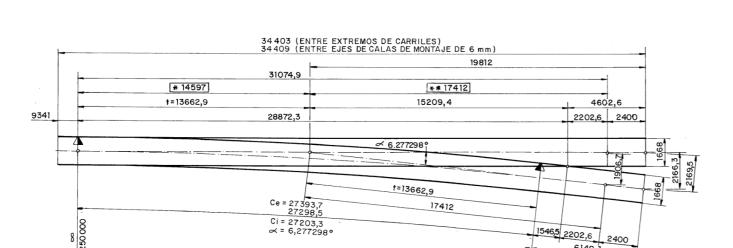
Si apoya en una capa con módulo de compresibilidad mínimo de 100 MPa la tensión admisible será ≥0,11 MPa quedando sometida a 0,0675 MPa, por lo que analizando la fatiga de la capa de apoyo sería adecuado para la vida útil de diseño.

5 DESVIO EN VÍA EN PLACA ZONA INTERIOR DEL PUERTO

Estos aparatos de vía en placa estarán constituidos por perfiles metálicos sobre los que irán soldados los elementos de fijación de los carriles (y partes metálicas del aparato), tal y como se prevé en las vías contiguas al aparato (vía estuchada). De esta manera el aparato quedará embebido en el hormigón del pavimento, permitiendo así su transitabilidad, tomando siempre la precaución de evitar el paso por las partes móviles del mismo.

Se trata de un aparato tipo C: DSL-C-54-250-0.11-1/D

Las <u>características generales</u> del sistema serán homólogas a las de las vías adyacentes al aparato, es decir "vía estuchada".

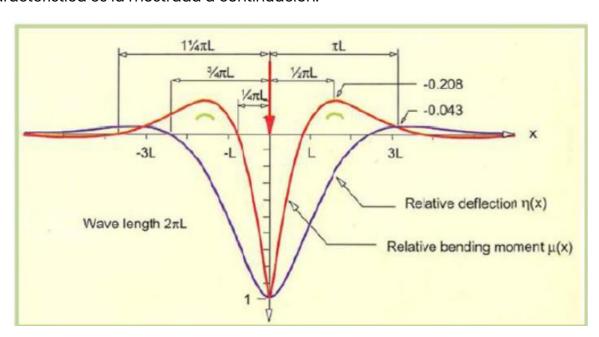

- Carril 54El (vertical).
- Ancho de vía sobre el elemento montado para la explotación en ancho ibérico
 1.668 mm.
- Perfil metálico, para soporte del aparato (con taladros para pernos (M20) de 24 mm de diámetro).
- Sujeciones entre perfil metálico y el carril tipo soldable Gantrex Railock W10/BJ
 (o similar). Apoyo rígido del carril al perfil metálico.

Otros datos de interés:

- Vía a cielo abierto sobre obra de tierra.
- Carga por eje 22,5 t/eje
- $V_{max} = 30 \text{ km/h}$
- R_{min} = 250 m.

Puerto de A Coruña

6149,1


5.1 COMPORTAMIENTO LONGITUDINAL.

En primer lugar, se evaluará el comportamiento longitudinal respecto a las **cargas verticales** lo que incluye:

• Determinación del coeficiente de impacto (según normativa alemana)

GEOMETRÍA DEL DESVÍO (SIN ESCALA)

El esquema de comportamiento bajo la carga de un eje, y la relación con la longitud característica es la mostrada a continuación:

Considerando valores del lado de la seguridad se obtiene el siguiente valor del coeficiente de impacto:

ф				
K	4.9	90 MN/mm2		
E	1500	00 N/mm2		
I	0.0056	9 m4		
Characteris	tic length (L)	288.922582 cm		
Lm	2.89	m		
Lф	13.62	m		
ф	1.23			
α	1.21			

No se debe olvidar que según el eurocódigo en plataforma el coeficiente de impacto tendría el valor de 1,0, pero para dejar los cálculos del lado de la seguridad y siguiendo el proceso de cálculo se empleará el valor obtenido anteriormente (1,26).

No se ha realizado un análisis independiente del carril con su apoyo ya que se trata de una estructura muy rígida y responde directamente como la placa o losa de vía al estar embebido.

5.2 COMPORTAMIENTO TRANSVERSAL. FUERZAS HORIZONTALES.

Estas acciones se transmitirán a la losa por las sujeciones y esta debe ser capaz de transmitirlas por contacto a la capa inferior.

Las acciones que darán lugar a fuerzas horizontales serán:

- Frenado y arranque.
- Fuerza centrífuga.
- Lazo.

El valor de cada una de las acciones viene fijado por la normativa en vigor siendo:

Frenado y arranque.

Frenado 24,2 kN/m.Arranque 39,93 kN/m.

Fuerza centrífuga.

Depende de la geometría y velocidad en el tramo más desfavorable que son:

- Radio mínimo 200 m.
- 30 km/h. Velocidad

$$Q_{tk} = \alpha \cdot \frac{Q_{v,k} \cdot v^2}{g \cdot r} \cdot f$$

$$Q_{tk} = \alpha \cdot \frac{Q_{v,k} \cdot v^2}{g \cdot r} \cdot f$$

$$q_{tk} = \alpha \cdot \frac{q_{v,k} \cdot v^2}{g \cdot r} \cdot t$$

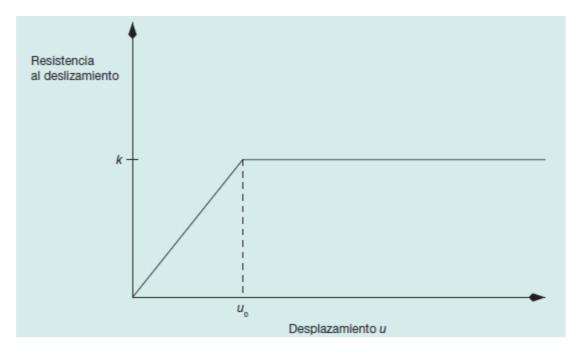
Q _{tk} (KN)	Valor de la fuerza centrífuga de la carga puntual
q _{tk} (KN/m)	Valor de la fuerza centrífuga de la carga uniforme

****		-
v (km/h)	30	Velocidad del ferrocarril
α	1.21	Coeficiente de clasificación a emplear
g (m/s)	9.81	Aceleración de la gravedad
r (m)	250	radio de la curva en planta
f	1.000	coeficiente reductor
L _f (m)	2.88	Longitud de vía cargada que produce el efecto más desfavorble
Q _{eje} (KN)	125	
q _{distribuida} (KN/m)	80	
Q _{tk} (KN)	12.33	
q _{tk} (KN/m)	7.89	

121 kN. Lazo

Evaluando la fuerza horizontal debido a la fuerza centrífuga con un rozamiento mínimo entre capas de hormigón se tendría:

Rozamiento en contacto


Peso propio	16.80 kN	I/m
Carga vertical	125 kN	I
Longitud	0.65 m	
μ	0.6	
μN	81.55 kN	l
F _{c máxima}	6.17	
$\gamma_{\text{seguridad}}$	13.22 No	Desliza

Las acciones transversales combinadas según normativa, y a soportar por cada banda 0,65 m.

Frenado y Arranque + Lazo	=	52.96343 < 81.55	OK
Fuerza Centrífuga + Lazo	=	28.38553 < 81.55	OK
Frenado y Arraque + Lazo + 50%Centrífuga	=	53.65173 < 81.55	OK
Centrífuga + 50%Frenado y Arranque + Lazo	=	41.36278 < 81.55	OK

Se garantiza que no existirá problemas de deslizamiento entre losa y prelosa.

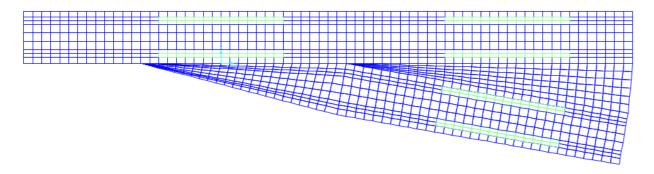
Independientemente de lo anterior analizando la ley de comportamiento de la vía en placa la fuerza horizontal que le llegaría a cada metro de losa está limitada por las sujeciones:

 $u_0 = 0.5 \text{ mm}.$

k = 40 kN/m, para vía descargada.

k = 60 kN/m, para vía cargada (sólo en la zona cargada).

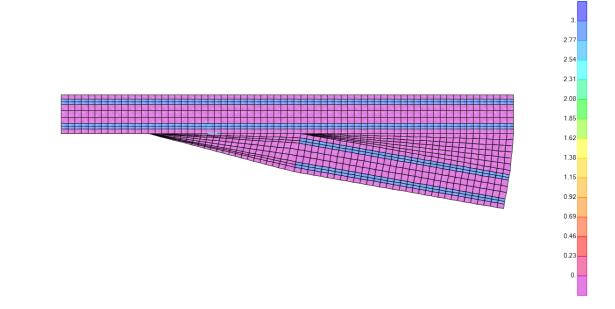
Cumple con los resultados obtenidos anteriormente.



5.3 MODELO DE CÁLCULO.

Para esta tipología el dimensionamiento de la vía en placa se realiza un modelo de 2,80 m-8,25 m de anchura, 30 m de longitud y 0,29 m de espesor, apoyado sobre un lecho elástico ($K_v = 6.400 \text{ kN/m}^3$).

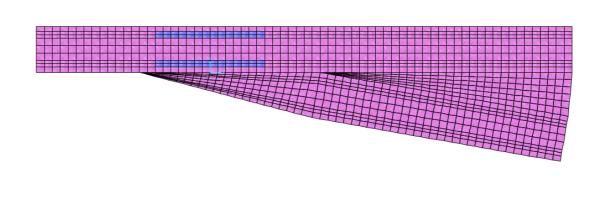
Según se ha determinado en el cálculo longitudinal de la vía (losa) se obtiene un coeficiente de impacto de 1,23 (ϕ), siempre del lado de la seguridad.


Modelo 2D.

La carga distribuida sobre la losa estará en un área de 39.74 cm x 666 cm (2.647 m²).

Las cargas aplicadas en el modelo han sido:

• **Peso propio** lo calcula internamente el programa.


Carga muerta.

Sobrecarga de uso.

Carga por aréa

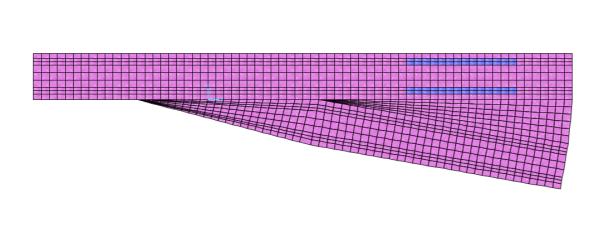
188.89 kN/m².

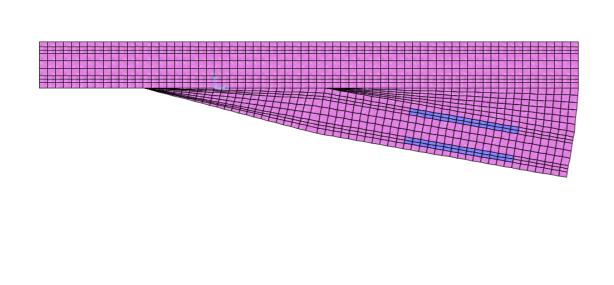
FFCC1

174.

145.

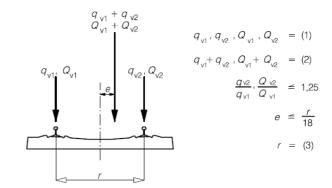
131. 116. 102.




174. 160. 145. 131. 116.

145.

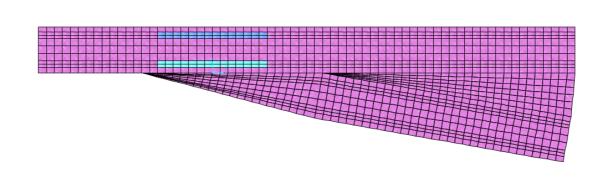
131. 116. 102.


FFCC 3

FFCC5

Los valores anteriores se mayorarán por 1,21 del coeficiente de clasificación y 1,26 de impacto (total 1,5246), valor que se introducirá al combinar las acciones.

Además, será necesario evaluar la excentricidad de cargas según se marca en la IAPF-07/Eurocódigo:

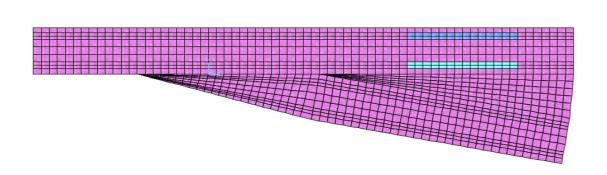

Sobrecarga de uso aplicando la excentricidad quedará:

Máxima carga distribuda:

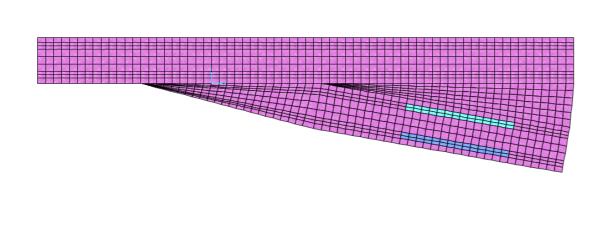
$$Q_1 = 209,89 \text{ kN/m}^2$$
.

Mínima carga distribuda:

$$Q_2 = 167,90 \text{ kN/m}^2$$
.


FFCC2

178.


129. 113.

FFCC4

FFCC6

A los valores anteriores se les aplica los coeficientes de clasificación e impacto.

• **Gradiente térmico**, el cálculo se realiza siguiendo la normativa en vigor, que para una losa maciza de hormigón se aplicará la siguiente expresión:

$$\Delta T_{SI} = (K_1 K_2) \Delta T_{SI,ref}$$

Donde:

194. 178.

161. 145. 129.

113.

210.194.178.161.145.

129.

113.

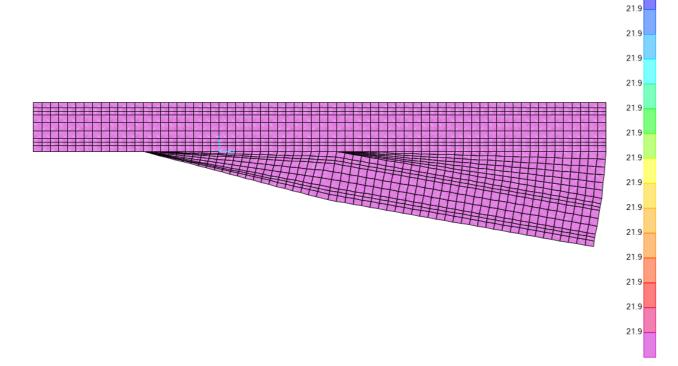
$$K_1 = 1,16$$
.

$$K_2 = 1,0.$$

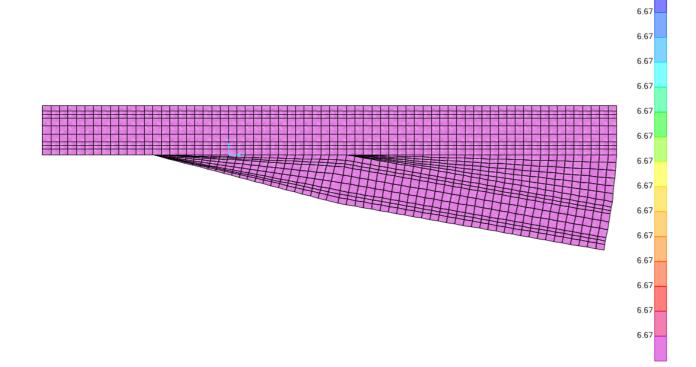
$$\Delta T_{Sl,ref} = 8,50^{\circ}$$
.

Con lo que se obtiene un valor del gradiente de ΔT^+_{SI} = 9,86 °C y en el caso negativo se tendrá:

TABLEROS DE HORMIGÓN				
CON BALASTO SIN BALASTO				
_	−3,0 °C			


$$\Delta T_{SI} = -3.0 \text{ }^{\circ}\text{C}.$$

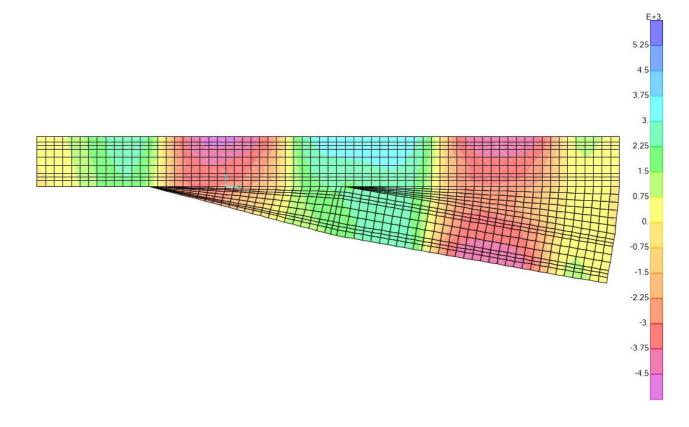
Siendo estos los valores de gradiente a aplicar en el modelo.



Gradiente positivo.

Gradiente negativo.

5.4 VERIFICACIÓN DE TENSIONES (ELS).

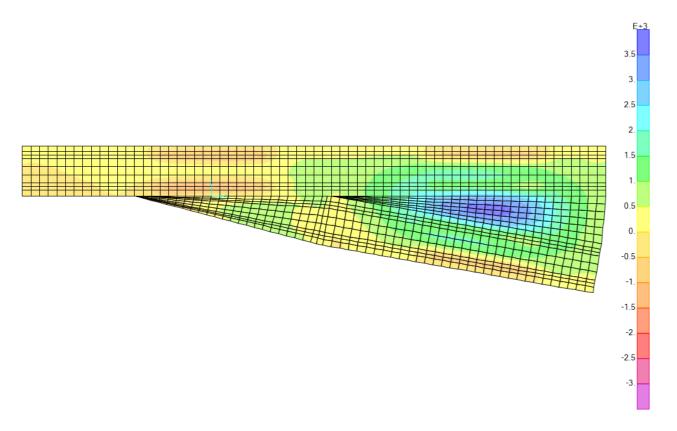

Una vez que se tienen las cargas en el modelo se combinan y en primer lugar se verifican las tensiones (ELS) con la finalidad de evaluar la necesidad o no de armado.

Se debe tener en cuenta que para un hormigón de 30 MPa los limites tensionales son:

Tracción 2,0 MPaCompresión 18,0 MPa.

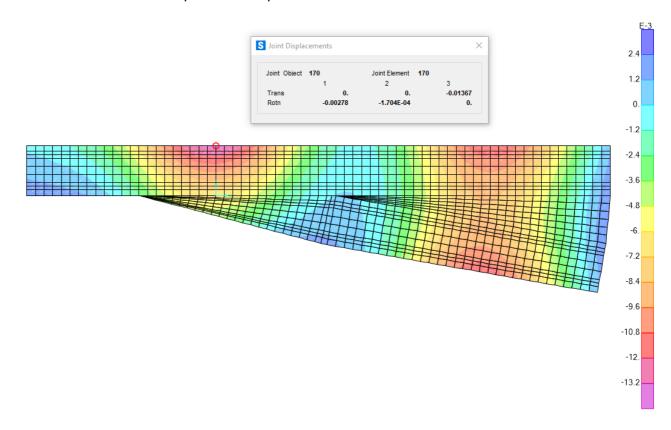
A continuación se verifican las tensiones en servicio, teniendo en cuenta la acción de gradiente térmico que suele ser condicionante en este tipo de estructuras.

Tensión longitudinal:



 $\sigma = \pm 4.650,00$ kN/m².

Tensión transversal:



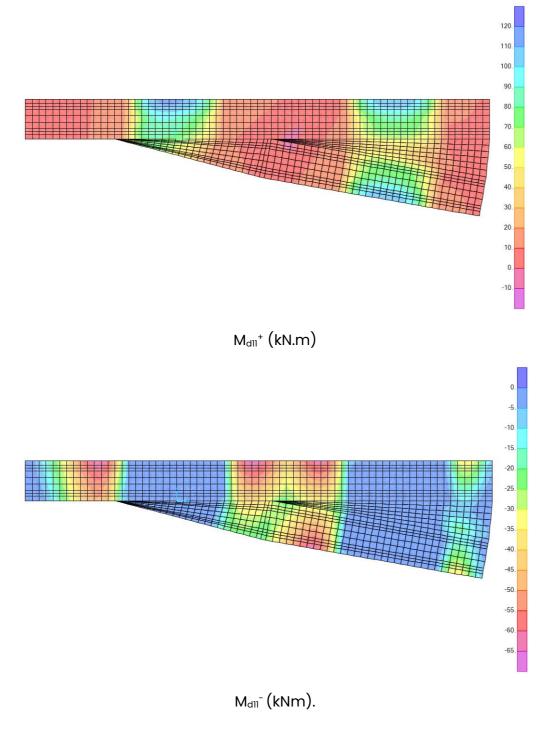
 $\sigma = \pm 3.700,00 \text{ kN/m}^2$.

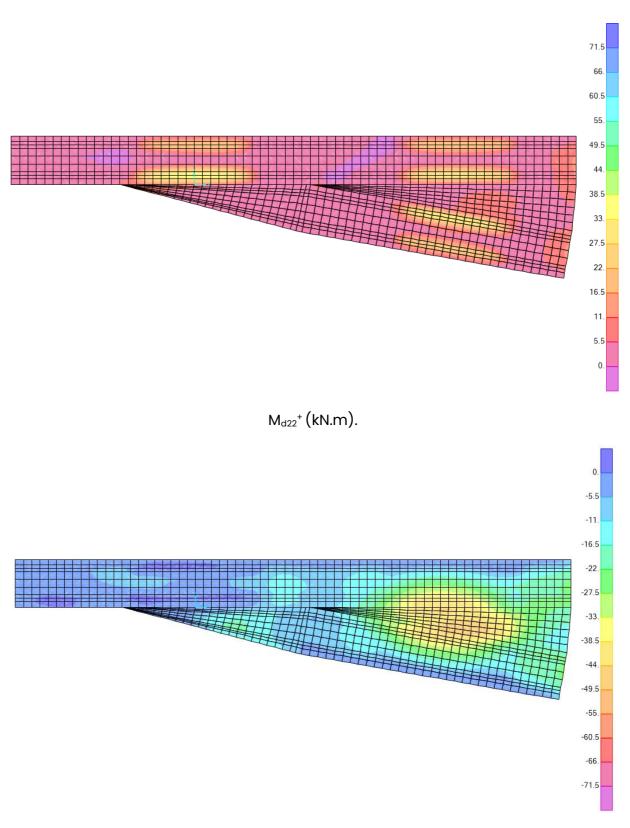
Se sobrepasa la tensión admisible por lo que se requiere la disposición de armadura que se procederá a calcular más adelante.

5.5 DEFORMACIONES.

Las deformaciones esperadas al paso del ferrocarril serán:

 δ = 13,67 mm.




5.6 ARMADO DE LA LOSA DE VÍA EN PLACA.

Una vez verificada la necesidad de disponer armadura en la placa en primer lugar, se determinarán los <u>esfuerzos</u> en ELU, tanto en sentido longitudinal como en transversal.

Momento longitudinal:

A continuación, se muestra el resumen de los valores de esfuerzos:

E	LU
kNm/m	S3
Md ⁺ ₁₁	120
Md- ₁₁	-65
Md ⁺ ₂₂	35.5
Md- ₂₂	-45

Armado de la sección.

En el caso de disponerse juntas la cuantía minima según el Codigo estrcutural en el apartado 9.3

$$A_{s,\min} = \frac{W}{z} \frac{f_{ctm,fl}}{f_{vd}} \tag{9.1}$$

donde:

es el brazo mecánico en las sección en Estado Límite Último, que puede calcularse de forma aproximada como z = 0,8h,

W es el módulo resistente de la sección bruta relativo a la fibra más traccionada.

 $f_{ctm,fl}$ es la resistencia media a flexotracción,

 f_{vd} es la resistencia de cálculo de las armaduras pasivas en tracción.

Cuantias Minimas:

Canto 0.29 m

$$\frac{W}{z} \cdot \frac{f_{ctm,fl}}{f_{yd}} = 5.27 \text{ cm2/m}$$

Armadura obtenida por esfuerzos:

A continuación se procederá a obtener el armado necesario para los esfuerzos a los que quedará sometida la losa de vía en placa.

DISEÑO DE LA ARMADURA								
COMBINACIONES ELU EN SITUACIÓN PERSISTENTE O TRANSITORIA								
f _{ck} =	300	kg/cm ²	f _{yk} =	5000	kg/cm ²			
$\gamma_c =$	1.50		$\gamma_s =$	1.15				
f _{cd} =	200.0	kg/cm ²	f _{yd} =	4348	kg/cm ²			

SECCIÓN 3	LOSA-DISEÑO ARMADURA DE FLEXIÓN								
LOSA	M _d (kNm/m)	d (m)	$A_{s,min}(cm^2/m)$	Uo (t)	Caso	Us1(t)	$A_{s,calc}(cm^2/m)$	$A_s(cm^2/m)$	
M ⁺ ₁₁	120.00	0.26	5.27	510	1	49.46	11.38	11.38	
M- ₁₁	-65.00	0.26	5.27	510	1	26.16	6.02	6.02	
M ⁺ ₂₂	35.50	0.26	5.27	510	1	14.12	3.25	5.27	
M- ₂₂	-45.00	0.26	5.27	510	1	17.96	4.13	5.27	

SECCIÓN 3	N 3 Armadura base				Armadura refuerzo			VALIDEZ
LOSA	ф	nº barras	$A_s^{base}(cm^2/m)$	ф	nº barras	$A_s^{ref.}(cm^2/m)$	$A_s^{total.}(cm^2/m)$	R (>1)
M+11	16	6	12.06	0	0	0.00	12.06	0 1.06
M-11	12	6	6.79	0	0	0.00	6.79	0 1.13
M+22	12	5	5.65	0	0	0.00	5.65	1.07
M-22	12	5	5.65	0	0	0.00	5.65	1.07

5.7 VERIFICACIÓN A FATIGA

Aunque según en apartado 6.8.1 del Eurocódigo 2 no sería necesaria realizar la verificación a fatiga al tratarse de una estructura asimilable a cimentación; a continuación, se procederá a su verificación tanto para el hormigón como del acero.

Los trenes de carga a emplear para el cálculo a fatiga serán los descritos en el apartado D.3 del Anexo D del Eurocódigo 1.

5.7.1 HORMIGÓN.

Siguiendo la expresión del Eurocódigo 2 - Parte 2 (apartado 6.8 Fatiga) el valor de cálculo de la resistencia a fatiga del hormigón se obtiene de la siguiente expresión:

$$f_{\rm cd,fat} = k_1 \beta_{\rm cc} \left(t_0 \right) f_{\rm cd} \left(1 - \frac{f_{\rm ck}}{250} \right)$$

- f_{cd, fat} valor de cálculo de la resistencia a fatiga del hormigón.
- $\beta_{cc}(t_0)$ coeficiente para la resistencia del hormigón en la primera puesta en la carga.
- t_0 = tiempo de inicio de la carga cíclica en hormigón en días.

$$\beta_{cc}(t) = \exp \left\{ s \left[1 - \left(\frac{28}{t} \right)^{1/2} \right] \right\}$$

• s = coeficiente que depende del tipo de cementos.

Sustituyendo se obtiene:

$$\begin{split} f_{cd,\,\text{fat}} &= 0.85 \, * \, 1.0 \, * \, 20 \, * \, (1\text{-}30/250) \, = 14.96 \; \text{MPa.} \\ k_1 &= 0.85. \\ t &= 28 \; \text{days.} \\ s &= 0.38. \\ \beta_{cc} \left(t_0 \right) &= \exp \left(0.38 * (1\text{-}(28/28)^{\circ}0.5) \right) \, = 1.0 \; (\text{no depende de s}). \\ f_{cd} &= 30/1.5 \, = 20 \; \text{MPa.} \\ f_{ck} &= 30 \; \text{MPa.} \end{split}$$

En cálculo se han obtenido tensiones máximas de 4,65 MPa cuando la losa queda sometida a la acción de la temperatura junto al ferrocarril, por lo cual es adecuado.

5.7.2 ARMADURA PASIVA.

 $f_{cd. fat} = 14.96 \text{ MPa.}$

Siguiendo la expresión del Eurocódigo 2 - Parte 1.1, apartado 6.8.4 el límite de la resistencia a fatiga viene definida por la siguiente expresión:

$$\gamma_{\mathsf{F},\mathsf{fat}} \cdot \Delta \sigma_{\mathsf{S},\mathsf{equ}} \left(N^* \right) \leq \frac{\Delta \sigma_{\mathsf{Rsk}} \left(N^* \right)}{\gamma_{\mathsf{s},\mathsf{fat}}}$$

Donde:

- γ_{F,fat} = 1.0 (valor recomendado).
- Δσ_{Rsk}(N*) rango de tension resistente obtenido a los N* ciclos, determinado mediante las curva S-N de la figura 6.30 y tabla 6.3N.

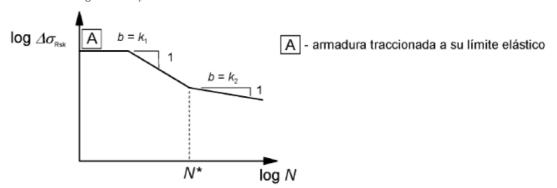


Figura 6.30 – Forma de la curva de resistencia a fatiga característica (curvas S-N para armaduras activas y pasivas)

Tabla 6.3N – Parámetros para curvas S-N de armaduras pasivas

Tipo de armadura pasiva		Exponente de la tensión		Δσ _{Rsk} (MPa)
Tipo de armadura pasiva	N*	<i>k</i> 1	k2	en N* ciclos
Barras rectas y dobladas¹	106	5	9	162,5
Barras soldadas y mallas electrosoldadas		3	5	58,5
Dispositivos de empalme		3	5	35

NOTA 1 Los valores para $\Delta \sigma_{\rm Esk}$ son para barras rectas. Los valores para barras dobladas se deberían obtener usando un factor de reducción ζ = 0,35 + 0,026 D/ϕ .

donde

- D diámetro del mandril
- φ diámetro de la barra

• $\gamma_{s,fat}$: los coeficientes parciales de seguridad para el cálculo de fatiga ($\gamma_{c,fat}$ and $\gamma_{s,fat}$) se obtienen de la tabla 2.1N.

Tabla 2.1N - Coeficientes parciales de seguridad para materiales para estados límite últimos

Situaciones de proyecto	γc para hormigón	γs para acero de armadura pasiva	γs para acero de armadura activa	
Persistente y transitoria	1,5	1,15	1,15	
Accidental	1,2	1,0	1,0	

Δσ_{sequ} (N*): rango tensional de daños equivalente para diferentes tipos de armadura y teniendo en cuenta el número de ciclos N*. Δ σ _{s,equ}(N*) puede aproximarse a Δ σ _{s,max} (rango máximo de tensiones del acero bajo las combinaciones de carga relevante).
 Obtniendo un valor de:

$$\Delta \sigma_{\text{Sequ}} (N^*) = \Delta \sigma_{\text{Rsk}} (N^*) / (\gamma_{\text{F,fat}} * \gamma_{\text{S,fat}}) = 162.5 / (1.00 * 1.15) = 141.30 \text{ MPa}$$

A continuación, se verificará la tensión de la armadura en sentido longitudinal Los momentos flectores obtenido bajo las cargas de fatiga han sido:

Espesores	0,29 m
M _{fat,11} ⁺ (kN.m)	25,00
M _{fat,11} -(kN.m).	-17,67

Sección sin fisurar								
Sección			Refuerzo		Hormigór	1	Momento fl	ector
anchura (m)	1.0		f _y (Mpa)	500.0	f _{ck} (Mpa)	30	M _k (kN.m)	25.00
canto (m)	0.29		ΔσS _{equ} (N*) (Mpa)	141.3	f _{ctk} (Mpa	2.03	M _k (kN.m)	17.67
recubrimiento (cm)	3.5		Diametro (mm)	16	12	•		
d (m)	0.224		barras	0	0			
I (m ⁴)	0.0020		Area (mm²)	33.51	18.85			
y _{cdg} (m)	0.145							
	M11+		1		M11 -			
σ _c (Mpa)	1.78	No Craking		σ_{c} (Mpa)	1.26	No Craking		
σ _s (Mpa)	8.09	ОК]	σ _s (Mpa)	5.96	ОК		

El armado longitudinal dispuesto cumple con las limitaciones de fatiga.

Con la cuantía de armado dispuesta se requerirá disponer juntas.

5.8 CAPAS DE APOYO.

En el caso de las placas para desvío suelen ir dispuestas sobre una pequeña capa de hormigón en masa o de nivelación, a diferencia que en vía general no se suele disponer prelosa.

La máxima tensión transmitida por la losa del desvío será:

Losa vía en placa						
Ancho 2.80 m						
espesor		0.24	m			
	σ_{s}	67.52	kN/m ² .			

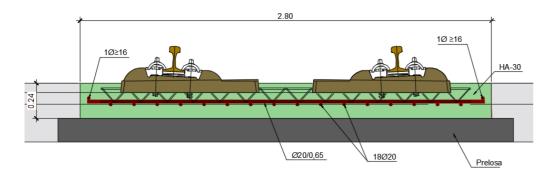
Si apoya en una capa con módulo de compresibilidad mínimo de 100 MPa la tensión admisible será ≥0,11 MPa quedando sometida a 0,0675 MPa, por lo que analizando la fatiga de la capa de apoyo sería adecuado para la vida útil de diseño.

6 CONCLUSIONES.

A continuación, se presentan los resultados del cálculo para cada una de las tipologías de vía dimensionadas.

6.1 VÍA EN PLACA CON TRAVIESA EMBEBIDA.

La vía estará formada por prelosa y losa con las geometría y características descritas a continuación.


6.1.1.1 Prelosa.

- Anchura 3,40 m. Espesor 30 cm.
- Hormigón fck ≥ 20 MPa.
- Juntas de retracción con una separación máxima de 5,0 m y profundidad 1/3 de la losa.

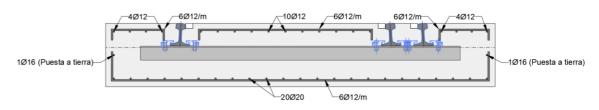
6.1.1.2 Losa de vía.

- Anchura 2,80 m. Espesor 24 cm (17 cm bajo bloque).
- Hormigón fck ≥ 30 MPa.
- Armadura:
 - Longitudinal 18 \$ 20.
- Sin juntas (fisuración controlada).

Por necesidades de puesta a tierra se añaden 1 ϕ 16 a cada extremo de la armadura longitudinal, por lo tanto, pasaría a ser 18 ϕ 20 + 2 ϕ 16.

6.2 VÍA EN PLACA ESTUCHADA.

Al igual que en el caso de la vía en placa con traviesa embebida el paquete de vía estará formado por prelosa y losa con las geometría y características descritas a continuación.

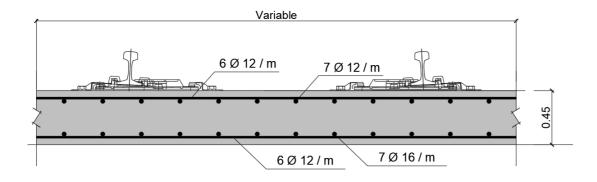

6.2.1.1 Prelosa.

- Anchura 3,40 m.
- Espesor 30 cm.
- Hormigón fck ≥ 20 MPa.
- Juntas de retracción con una separación máxima de 5,0 m y profundidad 1/3 de la losa.

6.2.1.2 Losa de vía.

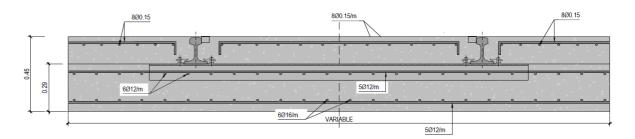
- Anchura 2,80 m.
- Espesor 45 cm.
- Hormigón fck ≥ 30 MPa.
- Armadura:
 - Longitudinal:
 - Superior \rightarrow 7Ø12/m (7,92 cm2/m).
 - Inferior → 7Ø20/m (21,99 cm2/m).
 - Transversal ambas caras → 6Ø12/m (6,79 cm2/m)
- Junta cada 30 metros.

Por necesidades de puesta a tierra se añaden 1 ϕ 16 a cada extremo de la armadura longitudinal.



6.3 DESVÍOS PARA VÍA EN PLACA ACCESO AL PUERTO.

La vía en placa en desvíos estará formada por una losa de hormigón armada sobre una capa de hormigón de nivelación, con la geometría y características descritas a continuación.


- Anchura 2,80- 10,00 m.
- Espesor 45 cm.
- Hormigón fck ≥ 30 MPa.
- Armadura:
 - Longitudinal:
 - Superior \rightarrow 7Ø12/m (7,92 cm2/m).
 - Inferior \rightarrow 7Ø16/m (14,07 cm2/m).
 - Transversal ambas caras → 6Ø12/m (6,79 cm2/m)
- Junta cada 30 metros.

6.4 DESVÍOS PARA VÍA EN PLACA ZONA INTERIOR DEL PUERTO

La vía en placa en desvíos estará formada por una losa de hormigón armada sobre una capa de hormigón de nivelación, con la geometría y características descritas a continuación.

- Anchura 2,80- 8,25 m.
- Espesor 29 cm.
- Hormigón fck ≥ 30 MPa.
- Armadura:
 - Longitudinal:
 - Superior \rightarrow 6Ø12/m (6,79 cm2/m).
 - Inferior \rightarrow 6Ø16/m (12,06 cm2/m).
 - Transversal ambas caras $\rightarrow 5012/m (5,65 \text{ cm} 2/m)$
- Junta cada 30 metros.

